Commit Graph

6 Commits

Author SHA1 Message Date
Nikita Popov c3ca6876ed [InstCombine] Don't simplify calls without uses
When simplifying a call without uses, replaceInstUsesWith() is
going to do nothing, but we'll skip all following folds. We can
only run into this problem with calls that both simplify and are
not trivially dead if unused, which currently seems to happen only
with calls to undef, as the test diff shows. When extending
SimplifyCall() to handle "returned" attributes, this becomes a much
bigger problem, so I'm fixing this first.

Differential Revision: https://reviews.llvm.org/D75814
2020-03-09 18:47:46 +01:00
Nikita Popov 4ef272ec9c [InstCombine] DCE instructions earlier
When InstCombine initially populates the worklist, it already
performs constant folding and DCE. However, as the instructions
are initially visited in program order, this DCE can pick up only
the last instruction of a dead chain, the rest would only get
picked up in the main InstCombine run.

To avoid this, we instead perform the DCE in separate pass over the
collected instructions in reverse order, which will allow us to
pick up full dead instruction chains. We already need to do this
reverse iteration anyway to populate the worklist, so this
shouldn't add extra cost.

This by itself only fixes a small part of the problem though:
The same basic issue also applies during the main InstCombine loop.
We generally always want DCE to occur as early as possible,
because it will allow one-use folds to happen. Address this by also
performing DCE while adding deferred instructions to the main worklist.

This drops the number of tests that perform more than 2 InstCombine
iterations from ~80 to ~40. There's some spurious test changes due
to operand order / icmp toggling.

Differential Revision: https://reviews.llvm.org/D75008
2020-02-27 18:45:59 +01:00
Nikita Popov 8058196677 [InstCombine] Process newly inserted instructions in the correct order
InstCombine operates on the basic premise that the operands of the
currently processed instruction have already been simplified. It
achieves this by pushing instructions to the worklist in reverse
program order, so that instructions are popped off in program order.
The worklist management in the main combining loop also makes sure
to uphold this invariant.

However, the same is not true for all the code that is performing
manual worklist management. The largest problem (addressed in this
patch) are instructions inserted by InstCombine's IRBuilder. These
will be pushed onto the worklist in order of insertion (generally
matching program order), which means that a) the users of the
original instruction will be visited first, as they are pushed later
in the main loop and b) the newly inserted instructions will be
visited in reverse program order.

This causes a number of problems: First, folds operate on instructions
that have not had their operands simplified, which may result in
optimizations being missed (ran into this in
https://reviews.llvm.org/D72048#1800424, which was the original
motivation for this patch). Additionally, this increases the amount
of folds InstCombine has to perform, both within one iteration, and
by increasing the number of total iterations.

This patch addresses the issue by adding a Worklist.AddDeferred()
method, which is used for instructions inserted by IRBuilder. These
will only be added to the real worklist after the combine finished,
and in reverse order, so they will end up processed in program order.
I should note that the same should also be done to nearly all other
uses of Worklist.Add(), but I'm starting with just this occurrence,
which has by far the largest test fallout.

Most of the test changes are due to
https://bugs.llvm.org/show_bug.cgi?id=44521 or other cases where
we don't canonicalize something. These are neutral. One regression
has been addressed in D73575 and D73647. The remaining regression
in an shl+sdiv fold can't really be fixed without dropping another
transform, but does not seem particularly problematic in the first
place.

Differential Revision: https://reviews.llvm.org/D73411
2020-01-30 09:40:10 +01:00
Nikita Popov 65c0805be5 [InstCombine] Fix infinite loop due to bitcast <-> phi transforms
Fix for https://bugs.llvm.org/show_bug.cgi?id=44245.

The optimizeBitCastFromPhi() and FoldPHIArgOpIntoPHI() end up
fighting against each other, because optimizeBitCastFromPhi()
assumes that bitcasts of loads will get folded. This doesn't
happen here, because a dangling phi node prevents the one-use
fold in https://github.com/llvm/llvm-project/blob/master/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp#L620-L628 from triggering.

This patch fixes the issue by explicitly performing the load
combine as part of the bitcast of phi transform. Other attempts
to force the load to be combined first were ultimately too
unreliable.

Differential Revision: https://reviews.llvm.org/D71164
2020-01-14 20:45:13 +01:00
Nikita Popov 7adb5c2aca Revert "[InstCombine] Fix infinite loop due to bitcast <-> phi transforms"
This reverts commit 27a0795943.

Seems to break test-suite.
2019-12-31 17:42:57 +01:00
Nikita Popov 27a0795943 [InstCombine] Fix infinite loop due to bitcast <-> phi transforms
Fix for https://bugs.llvm.org/show_bug.cgi?id=44245.

The optimizeBitCastFromPhi() and FoldPHIArgOpIntoPHI() end up
fighting against each other, because optimizeBitCastFromPhi()
assumes that bitcasts of loads will get folded. This doesn't happen
here, because a dangling phi node prevents the one-use fold in
https://github.com/llvm/llvm-project/blob/master/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp#L620-L628 from triggering.

This patch fixes the issue by adding manually removing the old phis.

Differential Revision: https://reviews.llvm.org/D71164
2019-12-31 16:17:14 +01:00