This is the companion to an LLVM patch that renamed the function index
data structures and files to use the more general module summary index.
llvm-svn: 263491
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
Summary:
This check was added in rL152620, and has started causing downstream warnings in Julia:
```
In file included from /home/tkelman/Julia/julia-0.5/src/codegen.cpp:22:0:
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h:84:5: warning: "LLVM_USE_INTEL_JITEVENTS" is not defined [-Wundef]
#if LLVM_USE_INTEL_JITEVENTS
^
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h💯5: warning: "LLVM_USE_OPROFILE" is not defined [-Wundef]
#if LLVM_USE_OPROFILE
^
```
Patch by Tony Kelman.
Reviewers: loladiro
Differential Revision: http://reviews.llvm.org/D17254
llvm-svn: 263487
On FreeBSD _LIBCPP_EXTERN_TEMPLATE is being defined from something
included by lldb/lldb-private.h. Undefine it after the #include to avoid
the redefinition warning.
Differential Revision: http://reviews.llvm.org/D17402
llvm-svn: 263486
This is a big update that gets the public configurations more in line with the ones we're actually using internally to ship Clang in Xcode.
From here forward I expect most of the changes in these files to be incremental as the changes get made internally.
llvm-svn: 263483
As noted in:
https://llvm.org/bugs/show_bug.cgi?id=26636
This doesn't accomplish anything on its own. It's the first step towards preserving
and using branch weights with selects.
The next step would be to make sure we're propagating the info in all of the other
places where we create selects (SimplifyCFG, InstCombine, etc). I don't think there's
an easy fix to make this happen; we have to look at each transform individually to
determine how to correctly propagate the weights.
Along with that step, we need to then use the weights when making subsequent transform
decisions such as discussed in http://reviews.llvm.org/D16836.
The inliner test is independent but closely related. It verifies that metadata is
preserved when both branches and selects are cloned.
Differential Revision: http://reviews.llvm.org/D18133
llvm-svn: 263482
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
Some instructions were missing isBranch, isCall, or isTerminator
flags. This didn't really affect code generation since most of
the affected patterns were used only for the AsmParser and/or
disassembler.
However, it could affect tools using the MC layer to disassemble
and parse binary code (e.g. via MCInstrDesc::mayAffectControlFlow).
llvm-svn: 263478
Automatic Semicolon Insertion can only be properly handled by parsing
source code. However conservatively catching just a few, common
situations prevents breaking code during development, which greatly
improves usability.
JS code should still use semicolons, and ASI code should be flagged by
a compiler or linter.
Patch by Martin Probst. Thank you.
llvm-svn: 263470
The relative vtable ABI will use a struct rather than an array as the type
of a vtable. LLVM only allows 32-bit integers as struct indices, so we need
to use 32-bit integers to get addresses of address points. In order to keep
the code simple, we might as well do that unconditionally.
It's probably a reasonable implementation limit to support no more than 2
billion virtual functions per class.
This change causes quite a bit of churn in the test suite, so I'm making
it separately.
Differential Revision: http://reviews.llvm.org/D18113
llvm-svn: 263469
In r262970 this was changed from xfail Clang < 3.5 to > 3.5, but it
still fails on FreeBSD 10's system Clang 3.4.1 so assume it fails on
all versions.
llvm.org/pr26937
llvm-svn: 263467
This marks virtual function declarations, as well as runtime library functions
__cxa_pure_virtual, __cxa_deleted_virtual and _purecall, as unnamed_addr. This
will allow us to correctly form relative references to them from vtables in
the relative vtable ABI.
Differential Revision: http://reviews.llvm.org/D18071
llvm-svn: 263464
The bad behavior happens when we have a function with a long linear chain of
basic blocks, and have a live range spanning most of this chain, but with very
few uses.
Let say we have only 2 uses.
The Hopfield network is only seeded with two active blocks where the uses are,
and each iteration of the outer loop in `RAGreedy::growRegion()` only adds two
new nodes to the network due to the completely linear shape of the CFG.
Meanwhile, `SpillPlacer->iterate()` visits the whole set of discovered nodes,
which adds up to a quadratic algorithm.
This is an historical accident effect from r129188.
When the Hopfield network is expanding, most of the action is happening on the
frontier where new nodes are being added. The internal nodes in the network are
not likely to be flip-flopping much, or they will at least settle down very
quickly. This means that while `SpillPlacer->iterate()` is recomputing all the
nodes in the network, it is probably only the two frontier nodes that are
changing their output.
Instead of recomputing the whole network on each iteration, we can maintain a
SparseSet of nodes that need to be updated:
- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its neighbors are
added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.
The result of Hopfield iterations is not necessarily exact. It should converge
to a local minimum, but there is no guarantee that it will find a global
minimum. It is possible that updating nodes in a different order will cause us
to switch to a different local minimum. In other words, this is not NFC, but
although I saw a few runtime improvements and regressions when I benchmarked
this change, those were side effects and actually the performance change is in
the noise as expected.
Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his feedbacks,
guidance and time for the review.
llvm-svn: 263460
When the SP in not changed because of realignment/VLAs etc., we restore the SP
by using the previous value of SP and not the FP. Breaking the dependency will
help in cases when the epilog of a callee is close to the epilog of the caller;
for then "sub sp, fp, #" depends on the load restoring the FP in the epilog of
the callee.
http://reviews.llvm.org/D18060
Patch by Aditya Kumar and Evandro Menezes.
llvm-svn: 263458
Converting masked vector loads to regular vector loads for x86 AVX should always be a win.
I raised the legality issue of reading the extra memory bytes on llvm-dev. I did not see any
objections.
1. x86 already does this kind of optimization for multiple scalar loads -> vector load.
2. If other targets have the same flexibility, we could move this transform up to CGP or DAGCombiner.
Differential Revision: http://reviews.llvm.org/D18094
llvm-svn: 263446
Summary:
MIPSR6 introduces a class of branches called compact branches. Unlike the
traditional MIPS branches which have a delay slot, compact branches do not
have a delay slot. The instruction following the compact branch is only
executed if the branch is not taken and must not be a branch.
It works by generating compact branches for MIPS32R6 when the delay slot
filler cannot fill a delay slot. Then, inspecting the generated code for
forbidden slot hazards (a compact branch with an adjacent branch or other
CTI) and inserting nops to clear this hazard.
Patch by Simon Dardis.
Reviewers: vkalintiris, dsanders
Subscribers: MatzeB, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16353
llvm-svn: 263444
Summary:
The current offloading implementation is using -omptargets and -omp-host-ir-file-path options in the frontend. This causes the user a lot of trouble due to to the conflicts with the -o option. E.g. if the user misspells omptargets he will end up with a file with a weird name.
This patches replaces these two options with -fomptargets and -fomp-host-ir-file-path to avoid these issues, and it is also more consistent with the other options like -fopenmp.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, caomhin, fraggamuffin
Differential Revision: http://reviews.llvm.org/D18112
llvm-svn: 263442
Summary:
When multiple threads perform an atomic op with the same arguments, they
will usually see different return values.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18101
llvm-svn: 263440
Summary:
Normally, when the remote stub is not ready, we will get ECONNREFUSED during the connect()
attempt. However, due to the way how ADB forwarding works, on android targets the connect() will
always be successful, but the connection will be immediately dropped if ADB could not connect on
the remote side. This commit tries to detect this situation, and report it as "connection
refused" so that the upper test layers attempt the connection again.
Reviewers: tfiala, tberghammer
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D18146
llvm-svn: 263439
Also introduce -stdlib=platform to override the configured value
and use it to make the tests always pass.
Differential Revision: http://reviews.llvm.org/D17286
llvm-svn: 263434
Build-id support is being added to lld and by default it may produce a
64-bit build-id.
Prior to this change lldb would reject such a build-id. However, it then
falls back to a 4-byte crc32, which is a poorer quality identifier.
Differential Revision: http://reviews.llvm.org/D18096
llvm-svn: 263432
On the z13, it turns out to be more efficient to access a full
floating-point register than just the upper half (as done e.g.
by the LE and LER instructions).
Current code already takes this into account when loading from
memory by using the LDE instruction in place of LE. However,
we still generate LER, which shows the same performance issues
as LE in certain circumstances.
This patch changes the back-end to emit LDR instead of LER to
implement FP32 register-to-register copies on z13.
llvm-svn: 263431