a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
to be able to specify the runhook(s) to bring the debug session to a certain state
before running the benchmarking logic. An example,
./dotest.py -v -t +b -k 'process attach -n Mail' -k 'thread backtrace all' -p TestRunHooksThenSteppings.py
spawns lldb, attaches to the 'Mail' application, does a backtrace for all threads, and then
runs the benchmark to step the inferior multiple times.
llvm-svn: 141740
for the debugger to execute for certain kind of tests (for example, a benchmark).
A list of runhooks can be used to steer the debugger into the desired state before more
actions can be performed.
llvm-svn: 141626
and the breakpoint specification for the benchmark purpose. This is used by TestSteppingSpeed.py
to benchmark the lldb stepping speed. Without '-e' and 'x' specified, the test defaults to
run the built lldb against itself and stopped on Driver::MainLoop, then stepping for 50 times.
rdar://problem/7511193
llvm-svn: 141584
SymbolFIle (it was done mostly in the BreakpointResolverName resolver before.) Then
tailor our searches to the way the indexed maps are laid out. This removes a bunch
of test case failures using indexed dSYM's.
llvm-svn: 141428
Set up self.lldbOption to be "--no-lldbibit" unless env variable NO_LLDBIBIT is defined and equals "NO".
Also add "-nx" to gdb spawned.
llvm-svn: 141384
when newly created threads were subsequently stopped due to breakpoint hit.
The stop-hook mechanism delegates to CommandInterpreter::HandleCommands() to
execuet the commands. Make sure the execution context is switched only once
at the beginning of HandleCommands() only and don't update the context while looping
on each individual command to be executed.
rdar://problem/10228156
llvm-svn: 141144
Add a keyword argument 'endstr' to TestBase.expect() method to assert that the output
will end with 'endstr'.
Add TestBase.switch_to_thread_with_stop_reason(stop_reason) to select the thread with
the stop reason = 'stop_reason' as the current thread.
o TestWatchLocation.py:
Modified to switch to the stopped thread with stop reason = watchpoint and to evaluate
an expression with expected output for stronger assertion.
llvm-svn: 140890
from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in
the lldb module. And the symbol_iter() function becomes a method within the SBModule
called symbol_in_section_iter(). Example:
# Iterates the text section and prints each symbols within each sub-section.
for subsec in text_sec:
print INDENT + repr(subsec)
for sym in exe_module.symbol_in_section_iter(subsec):
print INDENT2 + repr(sym)
print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType())
might produce this following output:
[0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text
id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870)
symbol type: code
id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0)
symbol type: code
id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c)
symbol type: code
id = {0x00000023}, name = 'start', address = 0x0000000100001780
symbol type: code
[0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs
id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62)
symbol type: trampoline
id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68)
symbol type: trampoline
id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e)
symbol type: trampoline
id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74)
symbol type: trampoline
id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a)
symbol type: trampoline
id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80)
symbol type: trampoline
id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86)
symbol type: trampoline
id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c)
symbol type: trampoline
id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92)
symbol type: trampoline
id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98)
symbol type: trampoline
id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e)
symbol type: trampoline
id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4)
symbol type: trampoline
[0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper
[0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring
[0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info
[0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame
llvm-svn: 140830
the watchpoint state is changed, not only does the change propagate to all the thread instances,
it also updates a global debug state, if chosen by the DNBArchProtocol derivative.
Once implemented, the DNBArchProtocol derivative, also makes sure that when new thread comes along,
it tries to inherit from the global debug state, if it is valid.
Modify TestWatchpointMultipleThreads.py to test this functionality.
llvm-svn: 140811
it enables the hardware watchpoint for all existing threads. Add a test file for that.
Also fix MachThreadList::DisableHardwareWatchpoint().
llvm-svn: 140757
In particular, it iterates through the executable module's SBSections, looking for the
'__TEXT' section and further iterates on its subsections (of SBSection type, too).
llvm-svn: 140654
Also add rich comparison methods (__eq__ and __ne__) for SBWatchpointLocation.
Modify TestWatchpointLocationIter.py to exercise the new APIs.
Add fuzz testings for the recently added SBTarget APIs related to watchpoint manipulations.
llvm-svn: 140633
to the Python interface.
Implement yet another (threre're 3 now) iterator protocol for SBTarget: watchpoint_location_iter(),
to iterate on the available watchpoint locations. And add a print representation for
SBWatchpointLocation.
Exercise some of these Python API with TestWatchpointLocationIter.py.
llvm-svn: 140595
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
set a watchpoint Pythonically. If the find-and-watch-a-variable operation
fails, an invalid SBValue is returned, instead.
Example Python usage:
value = frame0.WatchValue('global',
lldb.eValueTypeVariableGlobal,
lldb.LLDB_WATCH_TYPE_READ|lldb.LLDB_WATCH_TYPE_WRITE)
Add TestSetWatchpoint.py to exercise this API.
We have 400 test cases now.
llvm-svn: 140436
too long, so that the jump from the line above the bad line to the line after
ends up in the middle of the bad line instead. Added a workaround to lldb to just
continue to the end if we find ourselves stopped in the middle of some other line.
llvm-svn: 140419