Much to everyone's surprise, the default constructor for TypeResult produces
an instance with Invalid == false. This seems like a decision we may want to
revisit.
llvm-svn: 138601
Example:
template <class T>
class A {
public:
template <class U> void f(U p) { }
template <> void f(int p) { } // <== class scope specialization
};
This extension is necessary to parse MSVC standard C++ headers, MFC and ATL code.
BTW, with this feature in, clang can parse (-fsyntax-only) all the MSVC 2010 standard header files without any error.
llvm-svn: 137573
a member template, e.g.,
x.f<int>
if we have found a template in the type of x, but the lookup in the
current scope is ambiguous, just ignore the lookup in the current
scope. Fixes <rdar://problem/9915664>.
llvm-svn: 137255
which is required given the current setup for template
argument deduction substitution validation, and add a test
case to make sure we don't break it in the future.
llvm-svn: 135262
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
ownership-unqualified retainable object type as __strong. This allows
us to write, e.g.,
std::vector<id>
and we'll infer that the vector's element types have __strong
ownership semantics, which is far nicer than requiring:
std::vector<__strong id>
Note that we allow one to override the ownership qualifier of a
substituted template type parameter, e.g., given
template<typename T>
struct X {
typedef __weak T type;
};
X<id> is treated the same as X<__strong id>. At instantiation type,
the __weak in "__weak T" overrides the (inferred or specified)
__strong on the template argument type, so that we can still provide
metaprogramming transformations.
This is part of <rdar://problem/9595486>.
llvm-svn: 133303
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
before the template parameters have acquired a proper context (e.g.,
because the enclosing context has yet to be built), provide empty
parameter lists for all outer template parameter scopes to inhibit any
substitution for those template parameters. Fixes PR9643 /
<rdar://problem/9251019>.
llvm-svn: 133055
- Removed fix-it hints from template instaniations since changes to the
templates are rarely helpful.
- Changed the caret in template instaniations from the class/struct name to the
class/struct keyword, matching the other warnings.
- Do not offer fix-it hints when multiple declarations disagree. Warnings are
still given.
- Once a definition is found, offer a fix-it hint to all previous declarations
with wrong tag.
- Declarations that disagree with a previous definition will get a fix-it hint
to change the declaration.
llvm-svn: 132831
specializing a member of an unspecialized template, and recover from
such errors without crashing. Fixes PR10024 / <rdar://problem/9509761>.
llvm-svn: 132677
the template parameter, perform the checking as a "specified" template
argument rather than a "deduced" template argument; the latter implies
stricter type checking that is not permitted for default template
arguments.
Also, cleanup our handling of substitution of explicit template
arguments for a function template. We were actually performing some
substitution of default arguments at this point!
Fixes PR10069.
llvm-svn: 132529
parameter types to be ill-formed. However, it relies on the
completeness of method parameter types when producing metadata, e.g.,
for a protocol, leading IR generating to crash in such cases.
Since there's no real way to tighten down the semantics of Objective-C
here without breaking existing code, do something safe but lame:
suppress the generation of metadata when this happens.
Fixes <rdar://problem/9123036>.
llvm-svn: 132171
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
minor issues along the way:
- Non-type template parameters of type 'std::nullptr_t' were not
permitted.
- We didn't properly introduce built-in operators for nullptr ==,
!=, <, <=, >=, or > as candidate functions .
To my knowledge, there's only one (minor but annoying) part of nullptr
that hasn't been implemented: catching a thrown 'nullptr' as a pointer
or pointer-to-member, per C++0x [except.handle]p4.
llvm-svn: 131813
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
nested-name-specifier, re-evaluate the nested-name-specifier as if we
were entering that context (which we did!), so that we'll resolve a
template-id to a particular class template partial
specialization. Fixes PR9913.
llvm-svn: 131383
template<class U>
struct X1 {
template<class T> void f(T*);
template<> void f(int*) { }
};
Won't be so simple. I need to think more about it.
llvm-svn: 131362
template parameter lists to scope specifiers for friend declarations
about injected class name types. Fixes the
g++.dg/template/memfriend5.C regression in the GCC testsuite.
llvm-svn: 131272
nested of an out-of-line declaration, only require a 'template<>'
header for each enclosing class template that hasn't been previously
specialized; previously, we were requiring 'template<>' for enclosing
class templates and members of class templates that hadn't been
previously specialized. Fixes <rdar://problem/9422013>.
llvm-svn: 131207