avoids loading data from an external source, since those lookups were
causing some "interesting" recursion in LLDB.
This code is not efficient. I plan to remedy this inefficiency in a
follow-up commit.
llvm-svn: 142023
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
-Add the location of the class name to all objc container decls, not just ObjCInterfaceDecl.
-Make objc decls consistent with the rest of the NamedDecls and have getLocation() point to the
class name, not the location of '@'.
llvm-svn: 141061
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: -(id)first:(int)x second:(int)y;
-With a space between the arguments: -(id)first: (int)x second: (int)y;
-For nullary selectors, immediately before ';': -(void)release;
In such cases we infer the locations instead of storing them.
llvm-svn: 140989
, such as list of forward @class decls, in a DeclGroup
node. Deal with its consequence throught clang. This
is in preparation for more Sema work ahead. // rdar://8843851.
Feel free to reverse if it breaks something important
and I am unavailable.
llvm-svn: 138709
imported a forward declaration, but later the full definition of the
same entity becomes available. When this happens, import the definition.
llvm-svn: 136537
problem where Clang was setting the
hasExternalVisibleDecls() bit for all
DeclContexts it imported. This caused Clang
to make unnecessary calls to
findExternalVisibleDecls() when an external
AST source was installed.
In fact, Clang sometimes interpreted a failure
by one of these spurious calls to find a
Decl as meaning the Decl didn't exist, even
though findExternalLexicalDecls() did locate
that decl. This produced amusing errors of
the form:
-
error: no member named 'b' in 'A'; did you
mean 'b'?
-
Now, if hasExternalVisibleDecls() or
hasExternalLexicalDecls() should be set, the
external AST source must do so itself.
llvm-svn: 135824
in ImportDefinition when replacing a previously
forward-declared CXXRecordDecl with its full
definition. The forward-declared type's
DefinitionData had not been intialized for the
forward-declared type, so adding fields to the
Decl caused CXXRecordDecl::addedMember() to
crash when accessing the DefinitionData.
llvm-svn: 135530
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
Decl actually found via name lookup & overload resolution when that Decl
is different from the ValueDecl which is actually referenced by the
expression.
This can be used by AST consumers to correctly attribute references to
the spelling location of a using declaration, and otherwise gain insight
into the name resolution performed by Clang.
The public interface to DRE is kept as narrow as possible: we provide
a getFoundDecl() which always returns a NamedDecl, either the ValueDecl
referenced or the new, more precise NamedDecl if present. This way AST
clients can code against getFoundDecl without know when exactly the AST
has a split representation.
For an example of the data this provides consider:
% cat x.cc
namespace N1 {
struct S {};
void f(const S&);
}
void test(N1::S s) {
f(s);
using N1::f;
f(s);
}
% ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc
[...]
void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1>
(CallExpr 0x5b01df0 <line:6:3, col:6> 'void'
(ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)'))
(ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))
(DeclStmt 0x5b01ee0 <line:7:3, col:14>
0x5b01e40 "UsingN1::;")
(CallExpr 0x5b01fc8 <line:8:3, col:6> 'void'
(ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f')))
(ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))))
Now we can tell that the second call is 'using' (no pun intended) the using
declaration, and *which* using declaration it sees. Without this, we can
mistake calls that go through using declarations for ADL calls, and have no way
to attribute names looked up with using declarations to the appropriate
UsingDecl.
llvm-svn: 130670
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
Allow remapping a file by specifying another filename whose contents should be loaded if the original
file gets loaded. This allows to override files without having to create & load buffers in advance.
llvm-svn: 127052