This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
If we're going to assume references are dereferenceable, we should also
assume they're aligned: otherwise, we can't actually dereference them.
See also D80072.
Differential Revision: https://reviews.llvm.org/D80166
passed to __builtin_os_log_format to extend its lifetime to the end of
its enclosing block
Extend only lifetimes of pointers returned by function calls or message
sends instead. In the long term, we should lifetime-extend pointers in
more complex expressions and non-ARC objects (e.g., C++ temporaries)
too.
rdar://problem/61846261
Zero sized bit-fields aren't included in the CGRecordLayout, so we shouldn't be
calling EmitLValueForField for them. rdar://60695105
Differential revision: https://reviews.llvm.org/D76782
Summary:
The change is to fix conflict value for metadata "Objective-C Garbage Collection" in the mix of swift and Objective-C bitcode.
The purpose is to provide the support of LTO for swift and Objective-C mixed project.
Reviewers: rjmccall, ahatanak, steven_wu
Reviewed By: rjmccall, steven_wu
Subscribers: manmanren, mehdi_amini, hiraditya, dexonsmith, llvm-commits, jinlin
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71219
Fix a bug in IRGen where it wasn't destructing compound literals in C
that are ObjC pointer arrays or non-trivial structs. Also diagnose jumps
that enter or exit the lifetime of the compound literals.
rdar://problem/51867864
Differential Revision: https://reviews.llvm.org/D64464
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
__builtin_os_log_format
This is needed to keep all the objects, including temporaries returned
by function calls, written to the buffer alive until os_log_pack_send is
called.
rdar://problem/60105410
Block copy/destroy helpers are now linkonce_odr functions, meant to be uniqued, and thus attaching debug information from one translation unit (or even just from one instance of many inside one translation unit) would be misleading and wrong in the general case.
This effectively reverts commit 9c6b6826ce.
<rdar://problem/59137040>
Differential Revision: https://reviews.llvm.org/D75615
This reverts commit 0a9fc9233e.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
If the return block is unreachable, clang removes it in
CodeGenFunction::FinishFunction(). This removal can leave dangling
references to values defined in the return block if the return block has
successors, which it /would/ if UBSan's return value check is emitted.
In this case, as the UBSan check wouldn't be reachable, it's better to
simply not emit it.
rdar://59196131
For non direct methods, the codegen uses the type of the Implementation.
Because Objective-C rules allow some differences between the Declaration
and Implementation return types, when the Implementation is in this
translation unit, the type of the Implementation should be preferred to
emit the Function over the Declaration.
Radar-Id: rdar://problem/58797748
Signed-off-by: Pierre Habouzit <phabouzit@apple.com>
Differential Revision: https://reviews.llvm.org/D73208
If we do, then the property_list_t length is wrong
and class_getProperty gets very sad.
Signed-off-by: Pierre Habouzit <phabouzit@apple.com>
Radar-Id: rdar://problem/58804805
Differential Revision: https://reviews.llvm.org/D73219
Today the optimization is limited to:
- `[ClassName alloc]`
- `[self alloc]` when within a class method
However it means that when code is written this way:
```
@interface MyObject
- (id)copyWithZone:(NSZone *)zone
{
return [[self.class alloc] _initWith...];
}
@end
```
... then the optimization doesn't kick in and `+[NSObject alloc]` ends
up in IMP caches where it could have been avoided. It turns out that
`+alloc` -> `+[NSObject alloc]` is the most cached SEL/IMP pair in the
entire platform which is rather silly).
There's two theoretical risks allowing this optimization:
1. if the receiver is nil (which it can't be today), but it turns out
that `objc_alloc()`/`objc_alloc_init()` cope with a nil receiver,
2. if the `Clas` type for the receiver is a lie. However, for such a
code to work today (and not fail witn an unrecognized selector
anyway) you'd have to have implemented the `-alloc` **instance
method**.
Fortunately, `objc_alloc()` doesn't assume that the receiver is a
Class, it basically starts with a test that is similar to
`if (receiver->isa->bits & hasDefaultAWZ) { /* fastpath */ }`.
This bit is only set on metaclasses by the runtime, so if an instance
is passed to this function by accident, its isa will fail this test,
and `objc_alloc()` will gracefully fallback to `objc_msgSend()`.
The one thing `objc_alloc()` doesn't support is tagged pointer
instances. None of the tagged pointer classes implement an instance
method called `'alloc'` (actually there's a single class in the
entire Apple codebase that has such a method).
Differential Revision: https://reviews.llvm.org/D71682
Radar-Id: rdar://problem/58058316
Reviewed-By: Akira Hatanaka
Signed-off-by: Pierre Habouzit <phabouzit@apple.com>
This fixes a regression introduced in
2b4fa5348e that caused us to emit
shutdown-time destruction for variables with ARC ownership, using
C++-specific functions that don't exist in C implementations.
properties of the protocol it inherits
This fixes a bug where the type string for a @dynamic property of an
@implementation didn't have 'D' in it when the protocol it conforms to
redeclares the property declared in the base protocol.
rdar://problem/45503561
Because the name of a direct method must be agreed upon by the caller
and the implementation, certain bad practices that one can get away with
when using dynamism are fatal with direct methods.
To avoid really weird and unscruttable linker error, tighten the
front-end error reporting.
Rule 1:
Direct methods can only have at most one declaration in an @interface
container. Any redeclaration is strictly forbidden.
Today some amount of redeclaration is tolerated between the main
interface and categories for dynamic methods, but we can't have that.
Rule 2:
Direct method implementations can only be declared in a matching
@interface container: when implemented in the primary @implementation
then the declaration must be in the primary @interface or an
extension, and when implemented in a category, the declaration must be
in the @interface for the same category.
Also fix another issue with ObjCMethod::getCanonicalDecl(): when an
implementation lives in the primary @interface, then its canonical
declaration can be in any extension, even when it's not an accessor.
Add Sema tests to cover the new errors, and CG tests to beef up testing
around function names for categories and extensions.
Radar-Id: <rdar://problem/58054563>
Differential Revision: https://reviews.llvm.org/D71694
ObjCMethodDecl::getCanonicalDecl() for re-declared readwrite properties,
only looks in the ObjCInterface for the declaration of the setter
method, which it won't find.
When the method is a property accessor, we must look in extensions for a
possible redeclaration.
Radar-Id: rdar://problem/57991337
Differential Revision: https://reviews.llvm.org/D71588
Summary:
With DWARF5 it is no longer possible to distinguish normal methods and methods with `__attribute__((objc_direct))` by just looking at the debug information
as they are both now children of the of the DW_TAG_structure_type that defines them (before only the `__attribute__((objc_direct))` methods were children).
This means that in LLDB we are no longer able to create a correct Clang AST of a module by just looking at the debug information. Instead we would
need to call the Objective-C runtime to see which of the methods have a `__attribute__((objc_direct))` and then add the attribute to our own Clang AST
depending on what the runtime returns. This would mean that we either let the module AST be dependent on the Objective-C runtime (which doesn't
seem right) or we retroactively add the missing attribute to the imported AST in our expressions.
A third option is to annotate methods with `__attribute__((objc_direct))` as `DW_AT_APPLE_objc_direct` which is what this patch implements. This way
LLDB doesn't have to call the runtime for any `__attribute__((objc_direct))` method and the AST in our module will already be correct when we create it.
Reviewers: aprantl, SouraVX
Reviewed By: aprantl
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D71201
Copy the block to the heap before passing it to the callee in case the
block escapes in the callee.
rdar://problem/55683462
Differential Revision: https://reviews.llvm.org/D71431
Very few ELF platforms still use .ctors/.dtors now. Linux (glibc: 1999-07),
DragonFlyBSD, FreeBSD (2012-03) and Solaris have supported .init_array
for many years. Some architectures like AArch64/RISC-V default to
.init_array . GNU ld and gold can even convert .ctors to .init_array .
It makes more sense to flip the CC1 default, and only uses
-fno-use-init-array on platforms that don't support .init_array .
For example, OpenBSD did not support DT_INIT_ARRAY before Aug 2016
(86fa57a279)
I may miss some ELF platforms that still use .ctors, but their
maintainers can easily diagnose such problems.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71393
This commit sets the Self and Imp declarations for ObjC method declarations,
in addition to the definitions. It also fixes
a bunch of code in clang that had wrong assumptions about when getSelfDecl() would be set:
- CGDebugInfo::getObjCMethodName and AnalysisConsumer::getFunctionName would assume that it was
set for method declarations part of a protocol, which they never were,
and that self would be a Class type, which it isn't as it is id for a protocol.
Also use the Canonical Decl to index the set of Direct methods so that
when calls and implementations interleave, the same llvm::Function is
used and the same symbol name emitted.
Radar-Id: rdar://problem/57661767
Patch by: Pierre Habouzit
Differential Revision: https://reviews.llvm.org/D71091
ExpandTypeFromArgs
This fixes a bug in IRGen where a call to `llvm.objc.storeStrong` was
being emitted to initialize a __strong field of an uninitialized
temporary struct, which caused crashes at runtime.
rdar://problem/51807365
even in DWARF 4 and earlier. This allows the debugger to recognize
them as direct functions as opposed to Objective-C methods.
<rdar://problem/57327663>
Differential Revision: https://reviews.llvm.org/D70544
Assign artificial locations to calls to special struct-related helper
functions.
Such calls may not inherit a location if emitted within FinishFunction,
at which point the lexical scope stack may be empty, causing CGDebugInfo
to report the current DebugLoc as empty.
Fixes an IR verifier complaint about a call to '__destructor_8_s0' not
having a !dbg location attached.
rdar://57293361
__attribute__((objc_direct)) is an attribute on methods declaration, and
__attribute__((objc_direct_members)) on implementation, categories or
extensions.
A `direct` property specifier is added (@property(direct) type name)
These attributes / specifiers cause the method to have no associated
Objective-C metadata (for the property or the method itself), and the
calling convention to be a direct C function call.
The symbol for the method has enforced hidden visibility and such direct
calls are hence unreachable cross image. An explicit C function must be
made if so desired to wrap them.
The implicit `self` and `_cmd` arguments are preserved, however to
maintain compatibility with the usual `objc_msgSend` semantics,
3 fundamental precautions are taken:
1) for instance methods, `self` is nil-checked. On arm64 backends this
typically adds a single instruction (cbz x0, <closest-ret>) to the
codegen, for the vast majority of the cases when the return type is a
scalar.
2) for class methods, because the class may not be realized/initialized
yet, a call to `[self self]` is emitted. When the proper deployment
target is used, this is optimized to `objc_opt_self(self)`.
However, long term we might want to emit something better that the
optimizer can reason about. When inlining kicks in, these calls
aren't optimized away as the optimizer has no idea that a single call
is really necessary.
3) the calling convention for the `_cmd` argument is changed: the caller
leaves the second argument to the call undefined, and the selector is
loaded inside the body when it's referenced only.
As far as error reporting goes, the compiler refuses:
- making any overloads direct,
- making an overload of a direct method,
- implementations marked as direct when the declaration in the
interface isn't (the other way around is allowed, as the direct
attribute is inherited from the declaration),
- marking methods required for protocol conformance as direct,
- messaging an unqualified `id` with a direct method,
- forming any @selector() expression with only direct selectors.
As warnings:
- any inconsistency of direct-related calling convention when
@selector() or messaging is used,
- forming any @selector() expression with a possibly direct selector.
Lastly an `objc_direct_members` attribute is added that can decorate
`@implementation` blocks and causes methods only declared there (and in
no `@interface`) to be automatically direct. When decorating an
`@interface` then all methods and properties declared in this block are
marked direct.
Radar-ID: rdar://problem/2684889
Differential Revision: https://reviews.llvm.org/D69991
Reviewed-By: John McCall
This has the nice side-effect of also fixing a crash in Clang.
Starting with DWARF 5 we are emitting ObjC method declarations as
children of their containing entity. This worked for interfaces, but
didn't consider the case of synthessized properties. When a property
of a protocol is synthesized in an interface implementation the
ObjCMethodDecl that was passed to CGF::StartFunction was the property
*declaration* which obviously couldn't have a containing
interface. This patch passes the containing interface all the way
through to CGDebugInfo, so the function declaration can be created
with the correct parent (= the class implementing the protocol).
rdar://problem/53782400
Differential Revision: https://reviews.llvm.org/D66121
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
non-trivial C union types
This recommits r365985, which was reverted because it broke a few
projects using unions containing non-trivial ObjC pointer fields in
system headers. We now have a patch to fix the problem (see
https://reviews.llvm.org/D65256).
Original commit message:
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 371275
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
This reverts commit r365985.
Prior to r365985, clang used to mark C union fields that have
non-trivial ObjC ownership qualifiers as unavailable if the union was
declared in a system header. r365985 stopped doing so, which caused the
swift compiler to crash when it tried to import a non-trivial union.
I have a patch that fixes the crash (https://reviews.llvm.org/D65256),
but I'm temporarily reverting the original patch until we can decide on
whether it's taking the right approach.
llvm-svn: 367076
non-trivial C union types
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping
blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 365985