Commit Graph

139 Commits

Author SHA1 Message Date
Whitney Tsang dd3b6498b0 Title: Loop Cache Analysis
Summary: Implement a new analysis to estimate the number of cache lines
required by a loop nest.
The analysis is largely based on the following paper:

Compiler Optimizations for Improving Data Locality
By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
The analysis considers temporal reuse (accesses to the same memory
location) and spatial reuse (accesses to memory locations within a cache
line). For simplicity the analysis considers memory accesses in the
innermost loop in a loop nest, and thus determines the number of cache
lines used when the loop L in loop nest LN is placed in the innermost
position.

The result of the analysis can be used to drive several transformations.
As an example, loop interchange could use it determine which loops in a
perfect loop nest should be interchanged to maximize cache reuse.
Similarly, loop distribution could be enhanced to take into
consideration cache reuse between arrays when distributing a loop to
eliminate vectorization inhibiting dependencies.

The general approach taken to estimate the number of cache lines used by
the memory references in the inner loop of a loop nest is:

Partition memory references that exhibit temporal or spatial reuse into
reference groups.
For each loop L in the a loop nest LN: a. Compute the cost of the
reference group b. Compute the 'cache cost' of the loop nest by summing
up the reference groups costs
For further details of the algorithm please refer to the paper.
Authored By: etiotto
Reviewers: hfinkel, Meinersbur, jdoerfert, kbarton, bmahjour, anemet,
fhahn
Reviewed By: Meinersbur
Subscribers: reames, nemanjai, MaskRay, wuzish, Hahnfeld, xusx595,
venkataramanan.kumar.llvm, greened, dmgreen, steleman, fhahn, xblvaOO,
Whitney, mgorny, hiraditya, mgrang, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63459

llvm-svn: 368439
2019-08-09 13:56:29 +00:00
Kristof Umann 9353421ecd [IDF] Generalize IDFCalculator to be used with Clang's CFG
I'm currently working on a GSoC project that aims to improve the the bug reports
of the analyzer. The main heuristic I plan to use is to explain values that are
a control dependency of the bug location better.

01 bool b = messyComputation();
02 int i = 0;
03 if (b) // control dependency of the bug site, let's explain why we assume val
04        // to be true
05   10 / i; // warn: division by zero

Because of this, I'd like to generalize IDFCalculator so that I could use it for
Clang's CFG: D62883.

In detail:

* Rename IDFCalculator to IDFCalculatorBase, make it take a general CFG node
  type as a template argument rather then strictly BasicBlock (but preserve
  ForwardIDFCalculator and ReverseIDFCalculator)
* Move IDFCalculatorBase from llvm/include/llvm/Analysis to
  llvm/include/llvm/Support (but leave the BasicBlock variants in
  llvm/include/llvm/Analysis)
* clang-format the file since this patch messes up git blame anyways
* Change typedef to using
* Add the new type ChildrenGetterTy, and store an instance of it in
  IDFCalculatorBase. This is important because I'll have to specialize it for
  Clang's CFG to filter out nullpointer successors, similarly to D62507.

Differential Revision: https://reviews.llvm.org/D63389

llvm-svn: 364911
2019-07-02 11:30:12 +00:00
Richard Trieu 5f436fc57a Move DomTreeUpdater from IR to Analysis
DomTreeUpdater depends on headers from Analysis, but is in IR.  This is a
layering violation since Analysis depends on IR.  Relocate this code from IR
to Analysis to fix the layering violation.

llvm-svn: 353265
2019-02-06 02:52:52 +00:00
Vitaly Buka 4493fe1c1b [stack-safety] Empty local passes for Stack Safety Local Analysis
Reviewers: eugenis, vlad.tsyrklevich

Subscribers: mgorny, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D54502

llvm-svn: 347602
2018-11-26 21:57:47 +00:00
Nicolai Haehnle 59041687be [DA] DivergenceAnalysis for unstructured, reducible CFGs
Summary:
This is patch 2 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).

This patch contains a generic divergence analysis implementation for
unstructured, reducible Control-Flow Graphs. It contains two new classes.
The `SyncDependenceAnalysis` class lazily computes sync dependences, which
relate divergent branches to points of joining divergent control. The
`DivergenceAnalysis` class contains the generic divergence analysis
implementation.

Reviewers: nhaehnle

Reviewed By: nhaehnle

Subscribers: sameerds, kristina, nhaehnle, xbolva00, tschuett, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D51491

llvm-svn: 344734
2018-10-18 09:38:44 +00:00
Vikram TV 7e98d69847 Break LoopUtils into an Analysis file.
Summary:
The InductionDescriptor and RecurrenceDescriptor classes basically analyze the IR to identify the respective IVs. So, it is better to have them in the "Analysis" directory instead of the "Transforms" directory.

The rationale for this is to make the Induction and Recurrence descriptor classes available for analysis passes. Currently including them in an analysis pass produces link error (http://lists.llvm.org/pipermail/llvm-dev/2018-July/124456.html).

Induction and Recurrence descriptors are moved from Transforms/Utils/LoopUtils.h|cpp to Analysis/IVDescriptors.h|cpp.

Reviewers: dmgreen, llvm-commits, hfinkel

Reviewed By: dmgreen

Subscribers: mgorny

Differential Revision: https://reviews.llvm.org/D51153

llvm-svn: 342016
2018-09-12 01:59:43 +00:00
Nicolai Haehnle 35617ed4cb [NFC] Rename the DivergenceAnalysis to LegacyDivergenceAnalysis
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).

The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.

Patch by: Simon Moll

Reviewed By: nhaehnle

Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits

Differential Revision: https://reviews.llvm.org/D50434

Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
2018-08-30 14:21:36 +00:00
Max Kazantsev d3a4cbe153 [NFC] Move OrderedInstructions and InstructionPrecedenceTracking to Analysis
These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.

llvm-svn: 341015
2018-08-30 04:49:03 +00:00
Max Kazantsev 3c284bde3f Re-enable "[NFC] Unify guards detection"
rL340921 has been reverted by rL340923 due to linkage dependency
from Transform/Utils to Analysis which is not allowed. In this patch
this has been fixed, a new utility function moved to Analysis.

Differential Revision: https://reviews.llvm.org/D51152

llvm-svn: 341014
2018-08-30 03:39:16 +00:00
Sean Fertile cd0d7634f6 Revert "Extend CFGPrinter and CallPrinter with Heat Colors"
This reverts r335996 which broke graph printing in Polly.

llvm-svn: 336000
2018-06-29 17:48:58 +00:00
Sean Fertile 3b0535b424 Extend CFGPrinter and CallPrinter with Heat Colors
Extends the CFGPrinter and CallPrinter with heat colors based on heuristics or
profiling information. The colors are enabled by default and can be toggled
on/off for CFGPrinter by using the option -cfg-heat-colors for both
-dot-cfg[-only] and -view-cfg[-only].  Similarly, the colors can be toggled
on/off for CallPrinter by using the option -callgraph-heat-colors for both
-dot-callgraph and -view-callgraph.

Patch by Rodrigo Caetano Rocha!

Differential Revision: https://reviews.llvm.org/D40425

llvm-svn: 335996
2018-06-29 17:13:58 +00:00
John Brawn bdbbd8381f Add a PhiValuesAnalysis pass to calculate the underlying values of phis
This pass is being added in order to make the information available to BasicAA,
which can't do caching of this information itself, but possibly this information
may be useful for other passes.

Incorporates code based on Daniel Berlin's implementation of Tarjan's algorithm.

Differential Revision: https://reviews.llvm.org/D47893

llvm-svn: 335857
2018-06-28 14:13:06 +00:00
Philip Reames 89f2241770 Add an analysis printer for must execute reasoning
Many of our loop passes make use of so called "must execute" or "guaranteed to execute" facts to prove the legality of code motion. The basic notion is that we know (by assumption) an instruction didn't fault at it's original location, so if the location we move it to is strictly post dominated by the original, then we can't have introduced a new fault.

At the moment, the testing for this logic is somewhat adhoc and done mostly through LICM. Since I'm working on that code, I want to improve the testing. This patch is the first step in that direction. It doesn't actually test the variant used by the loop passes - I need to move that to the Analysis library first - but instead exercises an alternate implementation used by SCEV. (I plan on merging both implementations.)

Note: I'll be replacing the printing logic within this with an annotation based version in the near future.  Anna suggested this in review, and it seems like a strictly better format.  

Differential Revision: https://reviews.llvm.org/D44524

llvm-svn: 328004
2018-03-20 17:09:21 +00:00
Easwaran Raman bdf20261d8 Add a pass to generate synthetic function entry counts.
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.

The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)

Reviewers: davidxl, silvas

Subscribers: mgorny, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D41604

llvm-svn: 322110
2018-01-09 19:39:35 +00:00
Matthew Simpson 2284937bbc [IPSCCP] Move common functions to ValueLatticeUtils (NFC)
This patch moves some common utility functions out of IPSCCP and makes them
available globally. The functions determine if interprocedural data-flow
analyses can propagate information through function returns, arguments, and
global variables.

Differential Revision: https://reviews.llvm.org/D37638

llvm-svn: 315719
2017-10-13 17:53:44 +00:00
Adam Nemet 0965da2055 Rename OptimizationDiagnosticInfo.* to OptimizationRemarkEmitter.*
Sync it up with the name of the class actually defined here.  This has been
bothering me for a while...

llvm-svn: 315249
2017-10-09 23:19:02 +00:00
Matthew Simpson 49ee814996 [SparsePropagation] Move member definitions to header (NFC)
AbstractLatticeFunction and SparseSolver are class templates parameterized by a
lattice value, so we need to move these member functions over to the header.

Differential Revision: https://reviews.llvm.org/D38561

llvm-svn: 314996
2017-10-05 18:03:30 +00:00
Florian Hahn 8af01573a3 [LVI] Move LVILatticeVal class to separate header file (NFC).
Summary:
This allows sharing the lattice value code between LVI and SCCP (D36656). 

It also adds a `satisfiesPredicate` function, used by D36656.

Reviewers: davide, sanjoy, efriedma

Reviewed By: sanjoy

Subscribers: mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D37591

llvm-svn: 314411
2017-09-28 11:09:22 +00:00
Craig Topper 0aa3a19512 Recommit r310869, "[InstSimplify][InstCombine] Modify the interface of decomposeBitTestICmp and use it in the InstSimplify"
This recommits r310869, with the moved files and no extra changes.

Original commit message:

This addresses a fixme in InstSimplify about using decomposeBitTest. This also fixes InstSimplify to handle ugt and ult compares too.

I've modified the interface a little to return only the APInt version of the mask that InstSimplify needs. InstCombine now has a small wrapper routine to create a Constant out of it. I've also dropped the returning of 0 since InstSimplify doesn't need that. So InstCombine creates a zero constant itself.

I also had to make decomposeBitTest support vectors since InstSimplify needs that.

As InstSimplify can't use something from the Transforms library, I've moved the CmpInstAnalysis code to the Analysis library.

Differential Revision: https://reviews.llvm.org/D36593

llvm-svn: 310889
2017-08-14 21:39:51 +00:00
Craig Topper 69fa8e0d99 Revert r310869 "[InstSimplify][InstCombine] Modify the interface of decomposeBitTestICmp and use it in the InstSimplify"
Failed to add the two files that moved. And then added an extra change I didn't mean to while trying to fix that. Reverting everything.

llvm-svn: 310873
2017-08-14 19:09:32 +00:00
Craig Topper 2f0b450666 [InstSimplify][InstCombine] Modify the interface of decomposeBitTestICmp and use it in the InstSimplify
This addresses a fixme in InstSimplify about using decomposeBitTest. This also fixes InstSimplify to handle ugt and ult compares too.

I've modified the interface a little to return only the APInt version of the mask that InstSimplify needs. InstCombine now has a small wrapper routine to create a Constant out of it. I've also dropped the returning of 0 since InstSimplify doesn't need that. So InstCombine creates a zero constant itself.

I also had to make decomposeBitTest support vectors since InstSimplify needs that.

As InstSimplify can't use something from the Transforms library, I've moved the CmpInstAnalysis code to the Analysis library.

Differential Revision: https://reviews.llvm.org/D36593

llvm-svn: 310869
2017-08-14 18:49:42 +00:00
Daniel Berlin 554dcd8c89 MemorySSA: Move to Analysis, from Transforms/Utils. It's used as
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.

llvm-svn: 299980
2017-04-11 20:06:36 +00:00
Chandler Carruth 3bab7e1a79 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Chris Bieneman 05c279fc4b [CMake] NFC. Updating CMake dependency specifications
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.

llvm-svn: 287206
2016-11-17 04:36:50 +00:00
Adam Nemet aa3506c5f0 [BPI] Add new LazyBPI analysis
Summary:
The motivation is the same as in D22141: In order to add the hotness
attribute to optimization remarks we need BFI to be available in all
passes that emit optimization remarks.  BFI depends on BPI so unless we
make this lazy as well we would still compute BPI unconditionally.

The solution is to use the new LazyBPI pass in LazyBFI and only compute
BPI when computation of BFI is requested by the client.

I extended the laziness test using a LoopDistribute test to also cover
BPI.

Reviewers: hfinkel, davidxl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D22835

llvm-svn: 277083
2016-07-28 23:31:12 +00:00
Adam Nemet aad816083e [OptRemark,LDist] RFC: Add hotness attribute
Summary:
This is the first set of changes implementing the RFC from
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334

This is a cross-sectional patch; rather than implementing the hotness
attribute for all optimization remarks and all passes in a patch set, it
implements it for the 'missed-optimization' remark for Loop
Distribution.  My goal is to shake out the design issues before scaling
it up to other types and passes.

Hotness is computed as an integer as the multiplication of the block
frequency with the function entry count.  It's only printed in opt
currently since clang prints the diagnostic fields directly.  E.g.:

  remark: /tmp/t.c:3:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info (hotness: 300)

A new API added is similar to emitOptimizationRemarkMissed.  The
difference is that it additionally takes a code region that the
diagnostic corresponds to.  From this, hotness is computed using BFI.
The new API is exposed via an analysis pass so that it can be made
dependent on LazyBFI.  (Thanks to Hal for the analysis pass idea.)

This feature can all be enabled by setDiagnosticHotnessRequested in the
LLVM context.  If this is off, LazyBFI is not calculated (D22141) so
there should be no overhead.

A new command-line option is added to turn this on in opt.

My plan is to switch all user of emitOptimizationRemark* to use this
module instead.

Reviewers: hfinkel

Subscribers: rcox2, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D21771

llvm-svn: 275583
2016-07-15 17:23:20 +00:00
Adam Nemet c2f791d8a7 [BFI] Add new LazyBFI analysis pass
Summary:
This is necessary for D21771.  In order to add the hotness attribute to
optimization remarks we need BFI to be available in all passes that emit
optimization remarks.

However we don't want to pay for computing BFI unless the hotness
attribute is requested.

This is achieved by making BFI lazy at the very high-level through a new
analysis pass -- BFI is not calculated unless requested.

I am adding a test to check the laziness under D21771 where the first
user of the analysis is added.

Reviewers: hfinkel, dexonsmith, davidxl

Subscribers: davidxl, dexonsmith, llvm-commits

Differential Revision: http://reviews.llvm.org/D22141

llvm-svn: 275250
2016-07-13 05:01:48 +00:00
Teresa Johnson 1e44b5d3ab Refactor indirect call promotion profitability analysis (NFC)
Summary:
Refactored the profitability analysis out of the IC promotion pass and
into lib/Analysis so that it can be accessed by the summary index
builder in a follow-on patch to enable IC promotion in ThinLTO (D21932).

Reviewers: davidxl, xur

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D22182

llvm-svn: 275216
2016-07-12 21:13:44 +00:00
George Burgess IV e191996a57 [CFLAA] Split out more things from CFLSteens. NFC.
"More things" = StratifiedAttrs and various bits like interprocedural
summaries.

Patch by Jia Chen.

Differential Revision: http://reviews.llvm.org/D21964

llvm-svn: 274592
2016-07-06 00:47:21 +00:00
George Burgess IV bfa401e5ad [CFLAA] Split into Anders+Steens analysis.
StratifiedSets (as implemented) is very fast, but its accuracy is also
limited. If we take a more aggressive andersens-like approach, we can be
way more accurate, but we'll also end up being slower.

So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA.

Long-term, we want to end up in a place where CFLSteens is queried
first; if it can provide an answer, great (since queries are basically
map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc.

This patch splits everything out so we can try to do something like
that when we get a reasonable CFLAnders implementation.

Patch by Jia Chen.

Differential Revision: http://reviews.llvm.org/D21910

llvm-svn: 274589
2016-07-06 00:26:41 +00:00
Peter Collingbourne 7efd750607 IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:

1. It has the wrong name. The name "bitset" refers to an implementation
   detail of one use of the metadata (i.e. its original use case, CFI).
   This makes it harder to understand, as the name makes no sense in the
   context of virtual call optimization.

2. It is represented using a global named metadata node, rather than
   being directly associated with a global. This makes it harder to
   manipulate the metadata when rebuilding global variables, summarise it
   as part of ThinLTO and drop unused metadata when associated globals are
   dropped. For this reason, CFI does not currently work correctly when
   both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
   globals, and fails to associate metadata with the rebuilt globals. As I
   understand it, the same problem could also affect ASan, which rebuilds
   globals with a red zone.

This patch solves both of those problems in the following way:

1. Rename the metadata to "type metadata". This new name reflects how
   the metadata is currently being used (i.e. to represent type information
   for CFI and vtable opt). The new name is reflected in the name for the
   associated intrinsic (llvm.type.test) and pass (LowerTypeTests).

2. Attach metadata directly to the globals that it pertains to, rather
   than using the "llvm.bitsets" global metadata node as we are doing now.
   This is done using the newly introduced capability to attach
   metadata to global variables (r271348 and r271358).

See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html

Differential Revision: http://reviews.llvm.org/D21053

llvm-svn: 273729
2016-06-24 21:21:32 +00:00
Easwaran Raman 019e0bf592 Reapply r271728 after adding move cobstructor for ProfileSummaryInfo
llvm-svn: 271745
2016-06-03 22:54:26 +00:00
Easwaran Raman 94edaaaefb Revert r271728 as it breaks Windows build
llvm-svn: 271738
2016-06-03 21:14:26 +00:00
Easwaran Raman d142050f3a Analysis pass to access profile summary info
Differential Revision: http://reviews.llvm.org/D20648

llvm-svn: 271728
2016-06-03 20:37:19 +00:00
Peter Collingbourne ccdc225c27 Re-apply r269081 and r269082 with a fix for MSVC.
llvm-svn: 269094
2016-05-10 18:07:21 +00:00
Peter Collingbourne 4d41cb6cc6 Revert r269081 and r269082 while I try to find the right incantation to fix MSVC build.
llvm-svn: 269091
2016-05-10 17:54:43 +00:00
Peter Collingbourne 0df2b085bc WholeProgramDevirt: Move logic for finding devirtualizable call sites to Analysis.
The plan is to eventually make this logic simpler, however I expect it to
be a little tricky for the foreseeable future (at least until we're rid of
pointee types), so move it here so that it can be reused to build a summary
index for devirtualization.

Differential Revision: http://reviews.llvm.org/D20005

llvm-svn: 269081
2016-05-10 17:34:21 +00:00
Teresa Johnson 2d5487cf44 [ThinLTO] Move summary computation from BitcodeWriter to new pass
Summary:
This is the first step in also serializing the index out to LLVM
assembly.

The per-module summary written to bitcode is moved out of the bitcode
writer and to a new analysis pass (ModuleSummaryIndexWrapperPass).
The pass itself uses a new builder class to compute index, and the
builder class is used directly in places where we don't have a pass
manager (e.g. llvm-as).

Because we are computing summaries outside of the bitcode writer, we no
longer can use value ids created by the bitcode writer's
ValueEnumerator. This required changing the reference graph edge type
to use a new ValueInfo class holding a union between a GUID (combined
index) and Value* (permodule index). The Value* are converted to the
appropriate value ID during bitcode writing.

Also, this enables removal of the BitWriter library's dependence on the
Analysis library that was previously required for the summary computation.

Reviewers: joker.eph

Subscribers: joker.eph, llvm-commits

Differential Revision: http://reviews.llvm.org/D18763

llvm-svn: 265941
2016-04-11 13:58:45 +00:00
Justin Bogner eecc3c826a PM: Implement a basic loop pass manager
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.

This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.

llvm-svn: 261831
2016-02-25 07:23:08 +00:00
Michael Zolotukhin 1da4afdfc9 Factor out UnrollAnalyzer to Analysis, and add unit tests for it.
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.

I plan to add more tests as I add new functionality and find/fix bugs.

Reviewers: chandlerc, hfinkel, sanjoy

Subscribers: zzheng, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D16623

llvm-svn: 260169
2016-02-08 23:03:59 +00:00
David Majnemer 70497c696a Move EH-specific helper functions to a more appropriate place
No functionality change is intended.

llvm-svn: 254562
2015-12-02 23:06:39 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth 0f792189a4 [ARC] Pull the ObjC ARC components that really serve the role of
analyses into LLVM's Analysis library rather than having them in
a Transforms library.

This is motivated by the need to have the core AliasAnalysis
infrastructure be aware of the ObjCARCAliasAnalysis. However, it also
seems like a nice and clean separation. Everything was very easy to move
and this doesn't create much clutter in the analysis library IMO.

Differential Revision: http://reviews.llvm.org/D12133

llvm-svn: 245541
2015-08-20 08:06:03 +00:00
Chandler Carruth 7adc3a2b0e [PM/AA] Remove the last relics of the separate IPA library from LLVM,
folding the code into the main Analysis library.

There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.

Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.

I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.

Differential Revision: http://reviews.llvm.org/D12075

llvm-svn: 245318
2015-08-18 17:51:53 +00:00
Chandler Carruth e8824e3026 [PM/AA] Delete the LibCallAliasAnalysis and all the associated
infrastructure.

This AA was never used in tree. It's infrastructure also completely
overlaps that of TargetLibraryInfo which is used heavily by BasicAA to
achieve similar goals to those stated for this analysis.

As has come up in several discussions, the use case here is still really
important, but this code isn't helping move toward that use case. Any
progress on better supporting rich AA information for runtime library
environments would likely be better off starting from scratch or
starting from TargetLibraryInfo than from this base.

Differential Revision: http://reviews.llvm.org/D12028

llvm-svn: 245155
2015-08-15 09:22:21 +00:00
James Molloy 87405c7f66 Separate out BDCE's analysis into a separate DemandedBits analysis.
This allows other areas of the compiler to use BDCE's bit-tracking.
NFCI.

llvm-svn: 245039
2015-08-14 11:09:09 +00:00
Chandler Carruth 295282e0ab [PM/AA] Remove the AliasDebugger pass.
This debugger was designed to catch places where the old update API was
failing to be used correctly. As I've removed the update API, it no
longer serves any purpose. We can introduce new debugging aid passes
around any future work w.r.t. updating AAs.

Note that I've updated the documentation here, but really I need to
rewrite the documentation to carefully spell out the ideas around
stateful AA and how things are changing in the AA world. However, I'm
hoping to do that as a follow-up to the refactoring of the AA
infrastructure to work in both old and new pass managers so that I can
write the documentation specific to that world.

Differential Revision: http://reviews.llvm.org/D11984

llvm-svn: 244825
2015-08-12 22:54:47 +00:00
Bruno Cardoso Lopes dfc1d96ef8 [CaptureTracker] Provide an ordered basic block to PointerMayBeCapturedBefore
This patch is a follow up from r240560 and is a step further into
mitigating the compile time performance issues in CaptureTracker.

By providing the CaptureTracker with a "cached ordered basic block"
instead of computing it every time, MemDepAnalysis can use this cache
throughout its calls to AA->callCapturesBefore, avoiding to recompute it
for every scanned instruction. In the same testcase used in r240560,
compile time is reduced from 2min to 30s.

This also fixes PR22348.

rdar://problem/19230319
Differential Revision: http://reviews.llvm.org/D11364

llvm-svn: 243750
2015-07-31 14:31:35 +00:00