Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Follow up rL290858 by removing the MIPS specific version of XRayTable
emission in favour of the basic version.
This resolves a buildbot failure where the ELF sections were malformed
causing the linker to reject the object files with xray related sections.
Reviewers: dberris, slthakur
Differential Revision: https://reviews.llvm.org/D32808
llvm-svn: 302138
In case of microMIPS mode %gottprel operator should emit microMIPS
relocation R_MICROMIPS_TLS_GOTTPREL, not R_MIPS_TLS_GOTTPREL.
Differential Revision: http://reviews.llvm.org/D32617
llvm-svn: 301763
This broke the Clang build. (Clang-side patch missing?)
Original commit message:
> [IR] Make add/remove Attributes use AttrBuilder instead of
> AttributeList
>
> This change cleans up call sites and avoids creating temporary
> AttributeList objects.
>
> NFC
llvm-svn: 301712
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
Author: milena.vujosevic.janicic
Reviewers: sdardis
The code implements size reduction pass for MicroMIPS.
Load and store instructions are examined and transformed, if possible.
lw32 instruction is transformed into 16-bit instruction lwsp
sw32 instruction is transformed into 16-bit instruction swsp
Arithmetic instrcutions are examined and transformed, if possible.
addu32 instruction is transformed into 16-bit instruction addu16
subu32 instruction is transformed into 16-bit instruction subu16
Differential Revision: https://reviews.llvm.org/D15144
llvm-svn: 301540
Removed micro mips register classes for gp initialization because gp initialization uses pure mips64 instruction. Even when compiling for micro mips, gp initialization can be done with pure mips64 instructions.
Reviewed by Simon Dardis
Differential: D32286
llvm-svn: 301394
r299766 contained a "conditional move or jump depends on uninitialized value"
fault, identified by valgrind. This occurred as MipsFastISel::finishCall(..)
used CCState over MipsCCState. The latter is required for the TableGen'd calling
convention logic due to reliance on pre-analyzing type information to lower call
results/returns of vectors correctly.
This change modifies the MipsCC AnalyzeCallResult to be useful with both the
SelectionDAG and FastISel lowering logic.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D32004
llvm-svn: 301392
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
This revision documents the combination of C++ and table-gen code that
handles relocations and addresses.
Thanks for Simon Dardis for the careful reviews.
Differential Revision: https://reviews.llvm.org/D31628
llvm-svn: 300986
Masked vectors which hold shift amounts when creating the following nodes:
ISD::SHL, ISD::SRL or ISD::SRA.
Instructions that use said nodes, which have had their arguments altered are
sll, srl, sra, bneg, bclr and bset.
For said instructions, the shift amount or the bit position that is
specified in the corresponding vector elements will be interpreted as the
shift amount/bit position modulo the size of the element in bits.
The problem lies in compiling with -O2 enabled, where the instructions for
formats .w and .d are not generated, but are instead optimized away.
In this case, having shift amounts that are either negative or greater than
the element bit size results in generation of incorrect results when
constant folding.
We remedy this by masking the operands for the nodes mentioned above before
actually creating them, so that the final result is correct before placed
into the constant pool.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D31331
llvm-svn: 300839
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
This reverts commit r299766. This change appears to have broken the MIPS
buildbots. Reverting while I investigate.
Revert "[mips] Remove usage of debug only variable (NFC)"
This reverts commit r299769. Follow up commit.
llvm-svn: 299788
Fix the lld-x86_64-darwin13 buildbot by removing the declaration of a
debug only variable and instead moving the value into the debug statement.
llvm-svn: 299769
We have two cases here, the first one being the following instruction
selection from the builtin function:
bm(n)zi builtin -> vselect node -> bins[lr]i machine instruction
In case of bm(n)zi having an immediate which has either its high or low bits
set, a bins[lr] instruction can be selected through the selectVSplatMask[LR]
function. The function counts the number of bits set, and that value is
being passed to the bins[lr]i instruction as its immediate, which in turn
copies immediate modulo the size of the element in bits plus 1 as per specs,
where we get the off-by-one-error.
The other case is:
bins[lr]i -> vselect node -> bsel.v
In this case, a bsel.v instruction gets selected with a mask having one bit
less set than required.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D30579
llvm-svn: 299768
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 299766
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
This patch teaches the hazard scheduler how to handle empty blocks
when search for the next real instruction when dealing with forbidden
slots.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D31293
llvm-svn: 299427
Implementation of TargetInstrInfo::findCommutedOpIndices for MIPS target,
restricting commutativity to second and third operand only for
dpaadd_[su].df instructions therein.
Prior to this change, there were cases where the vector that is to be added
to the dot product of the other two could take a position other than the
first one in the instruction, generating false output in the destination
vector.
Such behavior has been noticed in the two functions generating v2i64 output
values so far. Other ones may exhibit such behavior as well, just not for
the vector operands which are present in the test at the moment.
Tests altered so that the function's first operand is a constant splat so
that it can be loaded with a ldi instruction, since that is the case in
which the erroneous instruction operand placement has occurred. We check
that the register which is present in the ldi instruction is placed as the
first operand in the corresponding dpadd instruction.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D30827
llvm-svn: 299223
This patch fixes decoding of size and position for DINSM
and DINSU instructions.
Differential Revision: https://reviews.llvm.org/D31072
llvm-svn: 298593
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
This patch adds support for recognizing more patterns to match to DEXT and
CINS instructions.
It finds cases where multiple instructions could be replaced with a single
DEXT or CINS instruction.
For example, for the following:
define i64 @dext_and32(i64 zeroext %a) {
entry:
%and = and i64 %a, 4294967295
ret i64 %and
}
instead of generating:
0000000000000088 <dext_and32>:
88: 64010001 daddiu at,zero,1
8c: 0001083c dsll32 at,at,0x0
90: 6421ffff daddiu at,at,-1
94: 03e00008 jr ra
98: 00811024 and v0,a0,at
9c: 00000000 nop
the following gets generated:
0000000000000068 <dext_and32>:
68: 03e00008 jr ra
6c: 7c82f803 dext v0,a0,0x0,0x20
Cases that are covered:
DEXT:
1. and $src, mask where mask > 0xffff
2. zext $src zero extend from i32 to i64
CINS:
1. and (shl $src, pos), mask
2. shl (and $src, mask), pos
3. zext (shl $src, pos) zero extend from i32 to i64
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D30464
llvm-svn: 297832
This patches teaches the MIPS backend to accept more values for constant
splats. Previously, only 10 bit signed immediates or values that could be
loaded using an ldi.[bhwd] instruction would be acceptted. This patch relaxes
that constraint so that any constant value that be splatted is accepted.
As a result, the constant pool is used less for vector operations, and the
suite of bit manipulation instructions b(clr|set|neg)i can now be used with
the full range of their immediate operand.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30640
llvm-svn: 297457
The fix introduces segfaults and clobbers the value to be stored when
the atomic sequence loops.
Revert "[Target/MIPS] Kill dead code, no functional change intended."
This reverts commit r296153.
Revert "Recommit "[mips] Fix atomic compare and swap at O0.""
This reverts commit r296134.
llvm-svn: 297380
Fix a machine verifier issue where a instruction was using a invalid
register. The return pseudo is expanded and has the return address
register added to it. The return register may have been spuriously
mark as killed earlier.
This partially resolves PR/27458
Thanks to Quentin Colombet for reporting the issue!
llvm-svn: 297372
This time with the missing files.
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296134
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296132
Previously LLVM was assuming 32-bit signed immediates which results in and with
a bitmask that has bit 31 set to incorrectly include bits 63-32 in the result.
After applying this patch I can now compile all of the FreeBSD mips assembly
code with clang.
This issue also affects the nor, slt and sltu macros and I will fix those in a
separate review.
Patch By: Alexander Richardson
Commit message reformatted by sdardis.
Reviewers: atanasyan, theraven, sdardis
Differential Revision: https://reviews.llvm.org/D30298
llvm-svn: 296125
Make the MIPS disassembler consistent with the other targets in returning
a Size of zero when the input buffer cannot contain an instruction due
to it's size. Previously it reported the minimum instruction size when
it failed due to the buffer not being big enough for an instruction
causing llvm-objdump to crash when disassembling all sections.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D29984
llvm-svn: 296105