class to be passed around. The line between argument and return types and
everything else is kindof vague, but I think it's justifiable.
llvm-svn: 121752
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
in more situations. In particular, for code like
template<class T> void Fn() { T* x; delete x; }
getDestroyedType() will now return T rather than T*, as it would
before this change. On the other hand, for code like this:
template<class T> void Fn() { T x; delete x; }
getDestroyedType() will return an empty QualType(), since it doesn't
know what the actual destroyed type would be. Previously, it would
return T.
OKed by rjmccall
llvm-svn: 119334
ensuring that they cover all of their child nodes. There's still a
clang_getCursor()-related issue with CXXFunctionalCastExprs with
CXXConstructExprs as children (see FIXME in the test case); I'll look
at that separately.
llvm-svn: 118132
This adds them where missing, and traces them through PCH. We fix at least one
bug in the extents found by the Index library, and make a lot of refactoring
tools which care about the exact formulation of a constructor call easier to
write. Also some minor cleanups to more consistently follow the friend pattern
instead of the setter pattern when rebuilding a serialized AST.
Patch originally by Samuel Benzaquen.
llvm-svn: 117254
Here's example code:
---
template<class T> class MyClass {
struct S { };
S* NewS() { return new S; }
void DeleteS() { delete NewS(); }
};
---
CXXDeleteExpr::getDestroyedType() on the 'delete NewS()' expression
would crash before this change. Now it returns a dependent type
object. Solution suggested by dgregor.
llvm-svn: 116891
"used", at the time that the default argument itself is used, also
mark destructors that will be called by this expression. This fixes a
regression that I introduced in r113700, which broke WebKit, and fixes
<rdar://problem/8427926>.
llvm-svn: 113883
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
size" error for code like
new (int [size])
to a warning, add a Fix-It to remove the parentheses, and make this
diagnostic work properly when it occurs in a template
instantiation. <rdar://problem/8018245>.
llvm-svn: 108242
keep track of whether we need to zero-initialize storage prior to
calling its constructor. Previously, we were only tracking this when
implicitly constructing the object (a CXXConstructExpr).
Fixes Boost's value-initialization tests, which means that the
Boost.Config library now passes all of its tests.
llvm-svn: 102461
UnresolvedLookupExpr and UnresolvedMemberExpr by substituting the
naming class we computed when building the expression in the
template...
... which we didn't always do correctly. Teach
UnresolvedMemberExpr::getNamingClass() all about the new
representation of injected-class-names in templates, so that it can
return a naming class that is the current instantiation.
Also, when decomposing a template-id into its template name and its
arguments, be sure to set the naming class on the LookupResult
structure.
Fixes PR6947 the right way.
llvm-svn: 102448
by using TypeSourceInfo, cleaning up the representation
somewhat. Teach getTypeOperand() to strip references and
cv-qualifiers, providing the semantic view of the type without
requiring any extra storage (the unmodified type remains within the
TypeSourceInfo). This fixes a bug found by Boost's call_traits test.
Finally, clean up semantic analysis, by splitting the ActOnCXXTypeid
routine into ActOnCXXTypeId (the parser action) and two BuildCXXTypeId
functions, which perform the semantic analysis for typeid(type) and
typeid(expression), respectively. We now perform less work at template
instantiation time (we don't look for std::type_info again) and can
give better diagnostics.
llvm-svn: 102393
address of overloaded function, instead of assuming that a nested name
specifier was used. A nested name specifier is not required for static
functions.
Fixes PR6886.
llvm-svn: 102107
expressions that look like pseudo-destructors, e.g.,
p->T::~T()
where p has dependent type.
At template instantiate time, we determine whether we actually have a
pseudo-destructor or a member access, and funnel down to the
appropriate routine in Sema.
Fixes PR6380.
llvm-svn: 97092
CXXPseudoDestructorExpr.
Update template instantiation for pseudo-destructor expressions to use
this source information and to make use of
Sema::BuildPseudoDestructorExpr when the base expression is dependent
or refers to a scalar type.
llvm-svn: 97079
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952
Change LookupResult to use UnresolvedSet. Also extract UnresolvedSet into its
own header and make it templated over an inline capacity.
llvm-svn: 93959
member function thereof), perform the template instantiation each time
the default argument is needed. This ensures that
(1) We get different CXXTemporary objects for each instantiation, and
(2) Any other instantiations or definitions triggered by the
instantiation of the default argument expression are guaranteed to
happen; previously, they might have been suppressed, e.g., because
they happened in an unevaluated context.
This fixes the majority of PR5810. However, it does not address the
problem where we may have multiple uses of the same CXXTemporary
within an expression when the temporary came from a non-instantiated
default argument expression.
llvm-svn: 92015
than using its own partial implementation of initialization.
Switched CheckInitializerTypes over to
InitializedEntity/InitializationKind, to help move us closer to
InitializationSequence.
Added InitializedEntity::getName() to retrieve the name of the entity,
for diagnostics that care about such things.
Implemented support for default initialization in
InitializationSequence.
Clean up the determination of the "source expressions" for an
initialization sequence in InitializationSequence::Perform.
Taught CXXConstructExpr to store more location information.
llvm-svn: 91492
implicit member access to a specific declaration, go ahead and create
it as a DeclRefExpr or a MemberExpr (with implicit CXXThisExpr base) as
appropriate. Otherwise, create an UnresolvedMemberExpr or
DependentScopeMemberExpr with a null base expression.
By representing implicit accesses directly in the AST, we get the ability
to correctly delay the decision about whether it's actually an instance
member access or not until resolution is complete. This permits us
to correctly avoid diagnosing the 'problem' of 'MyType::foo()'
where the relationship to the type isn't really known until instantiation.
llvm-svn: 90266
Create a new UnresolvedMemberExpr for these lookups. Assorted hackery
around qualified member expressions; this will all go away when we
implement the correct (i.e. extremely delayed) implicit-member semantics.
llvm-svn: 90161
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
appropriate lookup and simply can't resolve the referrent yet, and
"dependent scope" expressions, where we can't do the lookup yet because the
entity we need to look into is a dependent type.
llvm-svn: 89402
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
llvm-svn: 85500
such initializations properly convert constructor arguments and fill
in default arguments where necessary. This also makes the ownership
model more clear.
llvm-svn: 81394
templates, e.g.,
x.template get<T>
We can now parse these, represent them within an UnresolvedMemberExpr
expression, then instantiate that expression node in simple cases.
This allows us to stumble through parsing LLVM's Casting.h.
llvm-svn: 81300
expressions, e.g.,
p->~T()
when p is a pointer to a scalar type.
We don't currently diagnose errors when pseudo-destructor expressions
are used in any way other than by forming a call.
llvm-svn: 81009
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
and __has_trivial_constructor builtin pseudo-functions and
additionally implements __has_trivial_copy and __has_trivial_assign,
from John McCall!
llvm-svn: 76916
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193