function statics, file globals and static variables) that a frame contains.
The StackFrame objects can give out ValueObjects instances for
each variable which allows us to track when a variable changes and doesn't
depend on variable names when getting value objects.
StackFrame::GetVariableList now takes a boolean to indicate if we want to
get the frame compile unit globals and static variables.
The value objects in the stack frames can now correctly track when they have
been modified. There are a few more tweaks needed to complete this work. The
biggest issue is when stepping creates partial stacks (just frame zero usually)
and causes previous stack frames not to match up with the current stack frames
because the previous frames only has frame zero. We don't really want to
require that all previous frames be complete since stepping often must check
stack frames to complete their jobs. I will fix this issue tomorrow.
llvm-svn: 112800
documentation. Symbol now inherits from the symbol
context scope so that the StackID can use a "SymbolContextScope *"
instead of a blockID (which could have been the same as some other
blockID from another symbol file).
Modified the stacks that are created on subsequent stops to reuse
the previous stack frame objects which will allow for some internal
optimization using pointer comparisons during stepping.
llvm-svn: 112495
complex inlined examples.
StackFrame classes don't have a "GetPC" anymore, they have "GetFrameCodeAddress()".
This is because inlined frames will have a PC value that is the same as the
concrete frame that owns the inlined frame, yet the code locations for the
frame can be different. We also need to be able to get the real PC value for
a given frame so that variables evaluate correctly. To get the actual PC
value for a frame you can use:
addr_t pc = frame->GetRegisterContext()->GetPC();
Some issues with the StackFrame stomping on its own symbol context were
resolved which were causing the information to change for a frame when the
stack ID was calculated. Also the StackFrame will now correctly store the
symbol context resolve flags for any extra bits of information that were
looked up (if you ask for a block only and you find one, you will alwasy have
the compile unit and function).
llvm-svn: 111964
which is now on by default. Frames are gotten from the unwinder as concrete
frames, then if inline frames are to be shown, extra information to track
and reconstruct these frames is cached with each Thread and exanded as needed.
I added an inline height as part of the lldb_private::StackID class, the class
that helps us uniquely identify stack frames. This allows for two frames to
shared the same call frame address, yet differ only in inline height.
Fixed setting breakpoint by address to not require addresses to resolve.
A quick example:
% cat main.cpp
% ./build/Debug/lldb test/stl/a.out
Current executable set to 'test/stl/a.out' (x86_64).
(lldb) breakpoint set --address 0x0000000100000d31
Breakpoint created: 1: address = 0x0000000100000d31, locations = 1
(lldb) r
Launching 'a.out' (x86_64)
(lldb) Process 38031 Stopped
* thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread
277
278 _CharT*
279 _M_data() const
280 -> { return _M_dataplus._M_p; }
281
282 _CharT*
283 _M_data(_CharT* __p)
(lldb) bt
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread
frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280
frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288
frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606
frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414
frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14
frame #5: pc = 0x0000000100000d08, where = a.out`start + 52
Each inline frame contains only the variables that they contain and each inlined
stack frame is treated as a single entity.
llvm-svn: 111877
to spawn a thread for each process that is being monitored. Previously
LLDB would spawn a single thread that would wait for any child process which
isn't ok to do as a shared library (LLDB.framework on Mac OSX, or lldb.so on
linux). The old single thread used to call wait4() with a pid of -1 which
could cause it to reap child processes that it shouldn't have.
Re-wrote the way Function blocks are handles. Previously I attempted to keep
all blocks in a single memory allocation (in a std::vector). This made the
code somewhat efficient, but hard to work with. I got rid of the old BlockList
class, and went to a straight parent with children relationship. This new
approach will allow for partial parsing of the blocks within a function.
llvm-svn: 111706
Arrange that this then gets properly set on attach, or when a "file" is set.
Add a completer for "process attach -n".
Caveats: there isn't currently a way to handle multiple processes with the same name. That
will have to wait on a way to pass annotations along with the completion strings.
llvm-svn: 110624
including superclass members. This involved ensuring
that access control was ignored, and ensuring that
the operands of BitCasts were properly scanned for
variables that needed importing.
Also laid the groundwork for declaring objects of
custom types; however, this functionality is disabled
for now because of a potential loop in ASTImporter.
llvm-svn: 110174
involved watching for the objective C built-in types in DWARF and making sure
when we convert the DWARF types into clang types that we use the appropriate
ASTContext types.
Added a way to find and dump types in lldb (something equivalent to gdb's
"ptype" command):
image lookup --type <TYPENAME>
This only works for looking up types by name and won't work with variables.
It also currently dumps out verbose internal information. I will modify it
to dump more appropriate user level info in my next submission.
Hookup up the "FindTypes()" functions in the SymbolFile and SymbolVendor so
we can lookup types by name in one or more images.
Fixed "image lookup --address <ADDRESS>" to be able to correctly show all
symbol context information, but it will only show this extra information when
the new "--verbose" flag is used.
Updated to latest LLVM to get a few needed fixes.
llvm-svn: 110089
lldb_private::Language class into the enumerations header so it can be freely
used by other interfaces.
Added correct objective C class support to the DWARF symbol parser. Prior to
this fix we were parsing objective C classes as C++ classes and now that the
expression parser is ready to call functions we need to make sure the objective
C classes have correct AST types.
llvm-svn: 109574
it returns a list of functions as a SymbolContextList.
Rewrote the clients of SymbolContext to use this
SymbolContextList.
Rewrote some of the providers of the data to SymbolContext
to make them respect preferences as to whether the list
should be cleared first; propagated that change out.
ClangExpressionDeclMap and ClangASTSource use this new
function list to properly generate function definitions -
even for functions that don't have a prototype in the
debug information.
llvm-svn: 109476
I also added new functions to create an Objective C class, ivar and set an objective C superclass. They aren't hooked up in the DWARF parser yet. That is the next step, though I am unsure if I will do this in the DWARF parser or try and do it generically in the existing Record manipulation functions.
llvm-svn: 109130
defines that are in "llvm/Support/MachO.h". This should allow ObjectFileMachO
and ObjectContainerUniversalMachO to be able to be cross compiled in Linux.
Also did some cleanup on the ASTType by renaming it to ClangASTType and
renaming the header file. Moved a lot of "AST * + opaque clang type *"
functionality from lldb_private::Type over into ClangASTType.
llvm-svn: 109046
used by the JIT compiled expression, including the
result of the expression.
Also added a new class, ASTType, which encapsulates an
opaque Clang type and its associated AST context.
Refactored ClangExpressionDeclMap to use ASTTypes,
significantly reducing the possibility of mixups of
types from different AST contexts.
llvm-svn: 108965
enabled LLVM make style building and made this compile LLDB on Mac OS X. We
can now iterate on this to make the build work on both linux and macosx.
llvm-svn: 108009
line table entries that were termination entries (ones that define the bounds
of the previous entry) could be found when looking up line table entries.
We now properly skip these termination entries and check the next entry to
try for a match.
llvm-svn: 107729
- fixed 3 posix spawn attributes leaks
- fixed us always leaking CXXBaseSpecifier objects when we create class
base classes. Clang apparently copies the base classes we pass in.
Fixed some code formatting in ClangASTContext.cpp.
llvm-svn: 107459
Added the ability to read memory from the target's object files when we aren't
running, so disassembling works before you run!
Cleaned up the API to lldb_private::Target::ReadMemory().
Cleaned up the API to the Disassembler to use actual "lldb_private::Address"
objects instead of just an "addr_t". This is nice because the Address objects
when resolved carry along their section and module which can get us the
object file. This allows Target::ReadMemory to be used when we are not
running.
Added a new lldb_private::Address dump style: DumpStyleDetailedSymbolContext
This will show a full breakdown of what an address points to. To see some
sample output, execute a "image lookup --address <addr>".
Fixed SymbolContext::DumpStopContext(...) to not require a live process in
order to be able to print function and symbol offsets.
llvm-svn: 107350
intelligently. The four name types we currently have are:
eFunctionNameTypeFull = (1 << 1), // The function name.
// For C this is the same as just the name of the function
// For C++ this is the demangled version of the mangled name.
// For ObjC this is the full function signature with the + or
// - and the square brackets and the class and selector
eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class
// methods or selectors will be searched.
eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments
eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names
this allows much more flexibility when setting breakoints:
(lldb) breakpoint set --name main --basename
(lldb) breakpoint set --name main --fullname
(lldb) breakpoint set --name main --method
(lldb) breakpoint set --name main --selector
The default:
(lldb) breakpoint set --name main
will inspect the name "main" and look for any parens, or if the name starts
with "-[" or "+[" and if any are found then a full name search will happen.
Else a basename search will be the default.
Fixed some command option structures so not all options are required when they
shouldn't be.
Cleaned up the breakpoint output summary.
Made the "image lookup --address <addr>" output much more verbose so it shows
all the important symbol context results. Added a GetDescription method to
many of the SymbolContext objects for the more verbose output.
llvm-svn: 107075
ickiness, and is cleaner to boot.
I'm fairly confident that I converted the comparator over properly,
and what testing I could figure out how to run seemed to pass, but it
would be great if someone in the know could check behind me.
llvm-svn: 105834