member templates declared inside other templates. This allows us to
match out-of-line definitions of member function templates within
class templates to the declarations within the class template. We
still can't handle out-of-line definitions for member class templates,
however.
llvm-svn: 79955
that type. Note that we do not produce a diagnostic if the type is
incomplete; rather, we just don't look for conversion functions. Fixes PR4660.
llvm-svn: 79919
and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
- Allowing one to name a member function template within a class
template and on the right-hand side of a member access expression.
- Template argument deduction for calls to member function templates.
- Registering specializations of member function templates (and
finding them later).
llvm-svn: 79581
transform, then use the result for template instantiation. The generic
transformation fixes a few issues:
- It copes better with template template parameters and member
templates (when they're implemented).
- The logic used to replace template template parameters with their
arguments is now centralized in TransformDecl, so that it will apply
for other declaration-instantiation steps.
- The error-recovery strategy is normalized now, so that any error
results in a NULL TemplateName.
llvm-svn: 78292
template partial specialization. Then, use those template arguments
when instantiating members of that class template partial
specialization. Fixes PR4607.
llvm-svn: 77925
for those extra-esoteric cases. Not that any two given C++ compilers
agree on this test case, but this change gives us a strong definition
of equivalent types.
llvm-svn: 77664
template arguments, as in template specialization types. This permits
matching out-of-line definitions of members for class templates that
involve non-type template parameters.
llvm-svn: 77462
Doug, please look at decltype-crash and instantiate-function-1.mm, I'm not sure
if they are actually testing the right thing / anything.
llvm-svn: 77070
real. It turns out that we need to actually move all of the qualifiers
up to the array type itself, then recanonicalize the deduced template
argument type.
llvm-svn: 76788
by distinguishing between substitution that occurs for template
argument deduction vs. explicitly-specifiad template arguments. This
is used both to improve diagnostics and to make sure we only provide
SFINAE in those cases where SFINAE should apply.
In addition, deal with the sticky issue where SFINAE only considers
substitution of template arguments into the *type* of a function
template; we need to issue hard errors beyond this point, as
test/SemaTemplate/operator-template.cpp illustrates.
llvm-svn: 74651
instantiation stack so that we provide a full instantiation
backtrace. Previously, we performed all of the instantiations implied
by the recursion, but each looked like a "top-level" instantiation.
The included test case tests the previous fix for the instantiation of
DeclRefExprs. Note that the "instantiated from" diagnostics still
don't tell us which template arguments we're instantiating with.
llvm-svn: 74540
For a FunctionDecl that has been instantiated due to template argument
deduction, we now store the primary template from which it was
instantiated and the deduced template arguments. From this
information, we can instantiate the body of the function template.
llvm-svn: 74232
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
<rdar://problem/6952203>.
To do this, we actually remove a not-quite-correct optimization in the
C++ name lookup routines. We'll revisit this optimization for the
general case once more C++ is working.
llvm-svn: 73659
Implement support for C++ Substitution Failure Is Not An Error
(SFINAE), which says that errors that occur during template argument
deduction do *not* produce diagnostics and do not necessarily make a
program ill-formed. Instead, template argument deduction silently
fails. This is currently implemented for template argument deduction
during matching of class template partial specializations, although
the mechanism will also apply to template argument deduction for
function templates. The scheme is simple:
- If we are in a template argument deduction context, any diagnostic
that is considered a SFINAE error (or warning) will be
suppressed. The error will be propagated up the call stack via the
normal means.
- By default, all warnings and errors are SFINAE errors. Add the
NoSFINAE class to a diagnostic in the .td file to make it a hard
error (e.g., for access-control violations).
Note that, to make this fully work, every place in Sema that emits an
error *and then immediately recovers* will need to check
Sema::isSFINAEContext() to determine whether it must immediately
return an error rather than recovering.
llvm-svn: 73332
I'm not completely sure this is the right way to fix this issue, but it seems
reasonable, and it's consistent with the non-template code for this
construct.
llvm-svn: 73285
specialization's arguments are identical to the implicit template
arguments of the primary template. Typically, this is meant to be a
declaration/definition of the primary template, so we give that
advice.
llvm-svn: 73259
partial specialization, substitute those template arguments back into
the template arguments of the class template partial specialization to
see if the results still match the original template arguments.
This code is more general than it needs to be, since we don't yet
diagnose C++ [temp.class.spec]p9. However, it's likely to be needed
for function templates.
llvm-svn: 73196
(Actually, this isn't precisely correct, but it doesn't make
sense to query whether an expression that isn't an ICE is
value-dependent anyway.)
llvm-svn: 73179
specialization types. As the example shows, we can now compute the
length of a type-list using a template metaprogram and class template
partial specialization.
llvm-svn: 73136
- Once we have deduced template arguments for a class template partial
specialization, we use exactly those template arguments for instantiating
the definition of the class template partial specialization.
- Added template argument deduction for non-type template parameters.
- Added template argument deduction for dependently-sized array types.
With these changes, we can now implement, e.g., the remove_reference
type trait. Also, Daniel's Ackermann template metaprogram now compiles
properly.
llvm-svn: 72909
deductions of the same template parameter are equivalent. This allows
us to implement the is_same type trait (!).
Also, move template argument deduction into its own file and update a
few build systems with this change (grrrr).
llvm-svn: 72819
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662
printing logic to help customize the output. For now, we use this
rather than a special flag to suppress the "struct" when printing
"struct X" and to print the Boolean type as "bool" in C++ but "_Bool"
in C.
llvm-svn: 72590
instantiation of tags local to member functions of class templates
(and, eventually, function templates) works when the tag is defined as
part of the decl-specifier-seq, e.g.,
struct S { T x, y; } s1;
Also, make sure that we don't try to default-initialize a dependent
type.
llvm-svn: 72568
given DeclContext is dependent on type parameters. Use this to
properly determine whether a TagDecl is dependent; previously, we were
missing the case where the TagDecl is a local class of a member
function of a class template (phew!).
Also, make sure that, when we instantiate declarations within a member
function of a class template (or a function template, eventually),
that we add those declarations to the "instantiated locals" map so
that they can be found when instantiating declaration references.
Unfortunately, I was not able to write a useful test for this change,
although the assert() that fires when uncommenting the FIXME'd line in
test/SemaTemplate/instantiate-declref.cpp tells the "experienced user"
that we're now doing the right thing.
llvm-svn: 72526
parser. Rather than placing all of the delayed member function
declarations and inline definitions into a single bucket corresponding
to the top-level class, we instead mirror the nesting structure of the
nested classes and place the delayed member functions into their
appropriate place. Then, when we actually parse the delayed member
function declarations, set up the scope stack the same way as it was
when we originally saw the declaration, so that we can find, e.g.,
template parameters that are in scope.
llvm-svn: 72502
declaration references. The key realization is that dependent Decls,
which actually require instantiation, can only refer to the current
instantiation or members thereof. And, since the current context
during instantiation contains all of those members of the current
instantiation, we can simply find the real instantiate that matches up
with the "current instantiation" template.
llvm-svn: 72486
within a template now have a link back to the enumeration from which
they were instantiated. This means that we can now find the
instantiation of an anonymous enumeration.
llvm-svn: 72482
references. There are several smallish fixes here:
- Make sure we look through template parameter scope when
determining whether we're parsing a nested class (or nested class
*template*). This makes sure that we delay parsing the bodies of
inline member functions until after we're out of the outermost
class (template) scope.
- Since the bodies of member functions are always parsed
"out-of-line", even when they were declared in-line, teach
unqualified name lookup to look into the (semantic) parents.
- Use the new InstantiateDeclRef to handle the instantiation of a
reference to a declaration (in DeclRefExpr), which drastically
simplifies template instantiation for DeclRefExprs.
- When we're instantiating a ParmVarDecl, it must be in the current
instantiation scope, so only look there.
Also, remove the #if 0's and FIXME's from the dynarray example, which
now compiles and executes thanks to Anders and Eli.
llvm-svn: 72481
instantiation of a declaration from the template version (or version
that lives in a template) and a given set of template arguments. This
needs much, much more testing, but it suffices for simple examples
like
typedef T* iterator;
iterator begin();
llvm-svn: 72461
expressions. We are now missing template instantiation logic for only
three classes of expressions:
- Blocks-related expressions (BlockExpr, BlockDeclRefExpr)
- C++ default argument expressions
- Objective-C expressions
Additionally, our handling of DeclRefExpr is still quite poor, since
it cannot handle references to many kinds of declarations.
As part of this change, converted the TemplateExprInstantiator to use
iteration through all of the expressions via clang/AST/StmtNodes.def,
ensuring that we don't forget to add template instantiation logic for
any new expression node kinds.
llvm-svn: 72303
expressions. This change introduces another AST node,
CXXUnresolvedMemberExpr, that captures member references (x->m, x.m)
when the base of the expression (the "x") is type-dependent, and we
therefore cannot resolve the member reference yet.
Note that our parsing of member references for C++ is still quite
poor, e.g., we don't handle x->Base::m or x->operator int.
llvm-svn: 72281
can. Also, delay semantic analysis of initialization for
value-dependent as well as type-dependent expressions, since we can't
always properly type-check a value-dependent expression.
llvm-svn: 72233
llvm::SmallVector that owns all of the AST nodes inside of it. This
RAII class is used to ensure proper destruction of AST nodes when
template instantiation fails.
llvm-svn: 72186
temporaries are generated for some object-constructing expressions in
templates that are not type-dependent.
Also, be sure to introduce the variable from a CXXConditionDeclExpr
into the set of instantiated local variables.
llvm-svn: 72185
statement was using an rvalue reference during the template
definition. However, template instantiations based on an lvalue
reference type are well-formed, so we delay checking of these property
until template instantiation time.
llvm-svn: 72041
template, introduce that member function into the template
instantiation stack. Also, add diagnostics showing the member function
within the instantiation stack and clean up the qualified-name
printing so that we get something like:
note: in instantiation of member function 'Switch1<int, 2, 2>::f'
requested here
in the template instantiation backtrace.
llvm-svn: 72015
constructors and destructors. This is a requirement of
DeclarationNameTable::getCXXSpecialName that we weren't assert()'ing,
so it should have been caught much earlier :(
Big thanks to Anders for the test case.
llvm-svn: 71895
- Skip semantic analysis of the "if" condition if it is type-dependent.
- Added the location of the "else" keyword into IfStmt, so that we can
provide it for type-checking after template instantiation.
llvm-svn: 71875
template to the FunctionDecls from which they were instantiated. This
is a necessary first step to support instantiation of the definitions
of such functions, but by itself does essentially nothing.
llvm-svn: 71792
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
templates. In particular:
- An explicit instantiation can follow an implicit instantiation (we
were improperly diagnosing this as an error, previously).
- In C++0x, an explicit instantiation that follows an explicit
specialization of the same template specialization is ignored. In
C++98, we just emit an extension warning.
- In C++0x, an explicit instantiation must be in a namespace
enclosing the original template. C++98 has no such requirement.
Also, fixed a longstanding FIXME regarding the integral type that is
used for the size of a constant array type when it is being instantiated.
llvm-svn: 71689
still aren't instantiating the definitions of class template members,
and core issues 275 and 259 will both affect the checking that we do
for explicit instantiations (but are not yet implemented).
llvm-svn: 71613
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:
template<typename T, typename U>
struct X {
typedef T type;
X* x1; // current instantiation
X<T, U> *x2; // current instantiation
X<U, T> *x3; // not current instantiation
::X<type, U> *x4; // current instantiation
X<typename X<type, U>::type, U>: *x5; // current instantiation
};
llvm-svn: 71471
template. The injected-class-name is either a type or a template,
depending on whether a '<' follows it. As a type, the
injected-class-name's template argument list contains its template
parameters in declaration order.
As part of this, add logic for canonicalizing declarations, and be
sure to canonicalize declarations used in template names and template
arguments.
A TagType is dependent if the declaration it references is dependent.
I'm not happy about the rather complicated protocol needed to use
ASTContext::getTemplateSpecializationType.
llvm-svn: 71408
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
heuristics to determine when it's useful to desugar a type for display
to the user. Introduce two C++-specific heuristics:
- For a qualified type (like "foo::bar"), only produce a new
desugred type if desugaring the qualified type ("bar", in this
case) produces something interesting. For example, if "foo::bar"
refers to a class named "bar", don't desugar. However, if
"foo::bar" refers to a typedef of something else, desugar to that
something else. This gives some useful desugaring such as
"foo::bar (aka 'int')".
- Don't desugar class template specialization types like
"basic_string<char>" down to their underlying "class
basic_string<char, char_traits<char>, allocator<char>>, etc.";
it's better just to leave such types alone.
Update diagnostics.html with some discussion and examples of type
preservation in C++, showing qualified names and class template
specialization types.
llvm-svn: 68207
template template parameters and dependent template names. For
example, the oft-mentioned
typename MetaFun::template apply<T1, T2>::type
can now be instantiated, with the appropriate name lookup for "apply".
llvm-svn: 68128
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
instantiation for C++ typename-specifiers such as
typename T::type
The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,
typename T::template apply<U, V>
Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.
Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples.
llvm-svn: 67875
specializations can be treated as a template. Finally, we can parse
and process the first implementation of Fibonacci I wrote!
Note that this code does not handle all of the cases where
injected-class-names can be treated as templates. In particular,
there's an ambiguity case that we should be able to handle (but
can't), e.g.,
template <class T> struct Base { };
template <class T> struct Derived : Base<int>, Base<char> {
typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK
};
llvm-svn: 67720
templates, including in-class initializers. For example:
template<typename T, T Divisor>
class X {
public:
static const T value = 10 / Divisor;
};
instantiated with, e.g.,
X<int, 5>::value
to get the value '2'.
llvm-svn: 67715
the declarations of member classes are instantiated when the owning
class template is instantiated. The definitions of such member classes
are instantiated when a complete type is required.
This change also introduces the injected-class-name into a class
template specialization.
llvm-svn: 67707