--xunit-xml-output saves test results to disk in JUnit's xml format. This will allow Jenkins to report the details of a lit run.
Based on a patch by David Chisnall.
llvm-svn: 223163
This is the second patch in a small series. This patch contains the MachineInstruction and x86-64 backend pieces required to lower Statepoints. It does not include the code to actually generate the STATEPOINT machine instruction and as a result, the entire patch is currently dead code. I will be submitting the SelectionDAG parts within the next 24-48 hours. Since those pieces are by far the most complicated, I wanted to minimize the size of that patch. That patch will include the tests which exercise the functionality in this patch. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.
The STATEPOINT psuedo node is generated after all gc values are explicitly spilled to stack slots. The purpose of this node is to wrap an actual call instruction while recording the spill locations of the meta arguments used for garbage collection and other purposes. The STATEPOINT is modeled as modifing all of those locations to prevent backend optimizations from forwarding the value from before the STATEPOINT to after the STATEPOINT. (Doing so would break relocation semantics for collectors which wish to relocate roots.)
The implementation of STATEPOINT is closely modeled on PATCHPOINT. Eventually, much of the code in this patch will be removed. The long term plan is to merge the functionality provided by statepoints and patchpoints. Merging their implementations in the backend is likely to be a good starting point.
Reviewed by: atrick, ributzka
llvm-svn: 223085
Order matters for this container, it seems (using a forward_list and
replacing the original push_backs with emplace_fronts caused test
failures). I didn't look too deeply into why.
(& in retrospect, I might go back & change some of the forward_lists I
introduced to deques anyway - since most don't require removal, deque is
a more memory-friendly data structure (moderate locality while not
invalidating pointers))
llvm-svn: 222950
Seems libstdc++ on some buildbots is lacking std::map::emplace, which is
weird... reverting while I look into it.
This reverts commit r222937.
llvm-svn: 222939
Pointers and references to map elements are never invalidated (except on
removal, which isn't used here) so there's no need for the indirection
unless there's polymorphism at work.
A little const correctness had to be fixed, since the indirection
allowed some benign const violations.
llvm-svn: 222937
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
llvm-svn: 222936
Since the elements were not polymorphic, the unique_ptr was only used to
avoid pointer invalidation on container resizes - might as well skip the
indirection and use a container with suitable invalidation semantics.
llvm-svn: 222931
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 222632
Primarily done by using SequenceToOffsetTable to reduce the register pressure set tables and then sizing the indices into the tables appropriately. Size a few other table entries based on content as well. Reduces X86RegisterInfo.o by ~9k.
llvm-svn: 222621
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
llvm-svn: 222319
StringSet is still a bit dodgy in that it exposes the raw iterator of
the StringMap parent, which exposes the weird detail that StringSet
actually has a 'value'... but anyway, this is useful for a handful of
clients that want to reference the newly inserted/persistent string data
in the StringSet/Map/Entry/thing.
llvm-svn: 222302
This reverts commit r222183.
Broke on the MSVC buildbots due to MSVC not producing default move
operations - I'd fix it immediately but just broke my build system a
bit, so backing out until I have a chance to get everything going again.
llvm-svn: 222187
The next step is to actually use unique_ptr in TreePatternNode's
Children vector. That will be more intrusive, and may not work,
depending on exactly how these things are handled (I have a bad
suspicion things are shared more than they should be, making this more
DAG than tree - but if it's really a tree, unique_ptr should suffice)
llvm-svn: 222183
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
llvm-svn: 222118
based on instruction complexity
The order that tablegen fast-isel instruction code is generated is
currently based on the text of the predicate (using string
less-than). This patch changes this to instead use the instruction
complexity. Because the complexities are not unique a C++ multimap is
used instead of a map.
This fixes the problem where code with no predicate always comes out
first (the empty string always compares as less than all other
strings) thus making the code with predicates dead code. See the FMUL
code in PPCFastISel.cpp for an example. It also more closely matches
the normal codegen ordering. Some error checking in the tablegen
fast-isel code is fixed as well.
Patch by Bill Seurer.
llvm-svn: 222038