Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
llvm-svn: 221024
Our metadata scheme lazily assigns IDs to string metadata, but we have a mechanism to preassign them as well. Using a preassigned ID is helpful since we get compile time type checking, and avoid some (minimal) string construction and comparison. This change adds enum value for three existing metadata types:
+ MD_nontemporal = 9, // "nontemporal"
+ MD_mem_parallel_loop_access = 10, // "llvm.mem.parallel_loop_access"
+ MD_nonnull = 11 // "nonnull"
I went through an updated various uses as well. I made no attempt to get all uses; I focused on the ones which were easily grepable and easily to translate. For example, there were several items in LoopInfo.cpp I chose not to update.
llvm-svn: 220248
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
llvm-svn: 204049
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
llvm-svn: 198836
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
- llvm.loop.parallel metadata has been renamed to llvm.loop to be more generic
by making the root of additional loop metadata.
- Loop::isAnnotatedParallel now looks for llvm.loop and associated
llvm.mem.parallel_loop_access
- document llvm.loop and update llvm.mem.parallel_loop_access
- add support for llvm.vectorizer.width and llvm.vectorizer.unroll
- document llvm.vectorizer.* metadata
- add utility class LoopVectorizerHints for getting/setting loop metadata
- use llvm.vectorizer.width=1 to indicate already vectorized instead of
already_vectorized
- update existing tests that used llvm.loop.parallel and
llvm.vectorizer.already_vectorized
Reviewed by: Nadav Rotem
llvm-svn: 182802
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
llvm-svn: 159183
-stable-loops enables a new algorithm for generating the Loop
forest. It differs from the original algorithm in a few respects:
- Not determined by use-list order.
- Initially guarantees RPO order of block and subloops.
- Linear in the number of CFG edges.
- Nonrecursive.
I didn't want to change the LoopInfo API yet, so the block lists are
still inclusive. This seems strange to me, and it means that building
LoopInfo is not strictly linear, but it may not be a problem in
practice. At least the block lists start out in RPO order now. In the
future we may add an attribute or wrapper analysis that allows other
passes to assume RPO order.
The primary motivation of this work was not to optimize LoopInfo, but
to allow reproducing performance issues by decomposing the compilation
stages. I'm often unable to do this with the current LoopInfo, because
the loop tree order determines Loop pass order. Serializing the IR
tends to invert the order, which reverses the optimization order. This
makes it nearly impossible to debug interdependent loop optimizations
such as LSR.
I also believe this will provide more stable performance results across time.
llvm-svn: 158790
The implementation only needs inclusion from LoopInfo.cpp and
MachineLoopInfo.cpp. Clients of the interface should only include the
interface. This makes the interface readable and speeds up rebuilds
after modifying the implementation.
llvm-svn: 158787
Take this opportunity to generalize the indirectbr bailout logic for
loop transformations. CFG transformations will never get indirectbr
right, and there's no point trying.
llvm-svn: 154386
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
llvm-svn: 146610
The loop tree's inclusive block lists are painful and expensive to
update. (I have no idea why they're inclusive). The design was
supposed to handle this case but the implementation missed it and my
unit tests weren't thorough enough.
Fixes PR11335: loop unroll update.
llvm-svn: 144970
ancestor loops.
I have a unit test that depends on scev-unroll, which unfortunately
isn't checked in. But I will check it in when I can.
llvm-svn: 137341
An algorithm for incrementally updating LoopInfo within a
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
llvm-svn: 137276
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
llvm-svn: 136844
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
Loop::hasLoopInvariantOperands method. Remove
a useless and confusing Loop::isLoopInvariant(Instruction)
method, which didn't do what you thought it did.
No functionality change.
llvm-svn: 113133