Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
strchr("123!", C) != nullptr is a common pattern to check if C is one
of 1, 2, 3 or !. If the largest element of the string is smaller than
the target's register size we can easily create a bitfield and just
do a simple test for set membership.
int foo(char C) { return strchr("123!", C) != nullptr; } now becomes
cmpl $64, %edi ## range check
sbbb %al, %al
movabsq $0xE000200000001, %rcx
btq %rdi, %rcx ## bit test
sbbb %cl, %cl
andb %al, %cl ## and the two conditions
andb $1, %cl
movzbl %cl, %eax ## returning an int
ret
(imho the backend should expand this into a series of branches, but
that's a different story)
The code is currently limited to bit fields that fit in a register, so
usually 64 or 32 bits. Sadly, this misses anything using alpha chars
or {}. This could be fixed by just emitting a i128 bit field, but that
can generate really ugly code so we have to find a better way. To some
degree this is also recreating switch lowering logic, but we can't
simply emit a switch instruction and thus change the CFG within
instcombine.
llvm-svn: 232902