In case CSE reuses a previoulsy unused register the dead-def flag has to
be cleared on the def operand, as exposed by the arm64-cse.ll test.
This fixes PR22439 and the corresponding rdar://19694987
Differential Revision: http://reviews.llvm.org/D7395
llvm-svn: 228178
Go through implicit defs of CSMI and MI, and clear the kill flags on
their uses in all the instructions between CSMI and MI.
We might have made some of the kill flags redundant, consider:
subs ... %NZCV<imp-def> <- CSMI
csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
subs ... %NZCV<imp-def> <- MI, to be eliminated
csinc ... %NZCV<imp-use,kill>
Since we eliminated MI, and reused a register imp-def'd by CSMI
(here %NZCV), that register, if it was killed before MI, should have
that kill flag removed, because it's lifetime was extended.
Also, add an exhaustive testcase for the motivating example.
Reviewed by: Juergen Ributzka <juergen@apple.com>
llvm-svn: 223133
be propagated to all its users, and this propagation could increase the
probability of finding common subexpressions. If the COPY has only one user,
the COPY itself can be removed.
llvm-svn: 215344
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
This effectively backs out r197465 but leaves some of the general
fixes in place. Not all targets are ready to handle this feature. To
enable it, some infrastructure work is needed to better handle
register class constraints.
llvm-svn: 197514
Without this, MachineCSE is powerless to handle redundant operations with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It isn't clear what combinations of subregisters can legally be tied, but the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
Test case: cse-add-with-overflow.ll.
This exposed an existing bug in
PPCInstrInfo::commuteInstruction. Thanks to Rafael for the test case:
PowerPC/crash.ll.
llvm-svn: 197465
that it coalesces normal copies.
Without this, MachineCSE is powerless to handle redundant operations
with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It
isn't clear what combinations of subregisters can legally be tied, but
the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
llvm-svn: 197414
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
boundaries.
Given the following case:
BB0
%vreg1<def> = SUBrr %vreg0, %vreg7
%vreg2<def> = COPY %vreg7
BB1
%vreg10<def> = SUBrr %vreg0, %vreg2
We should be able to CSE between SUBrr in BB0 and SUBrr in BB1.
rdar://12462006
llvm-svn: 168717
physical register as candidate for common subexpression elimination
in MachineCSE.
This fixes a bug on PowerPC in MultiSource/Applications/oggenc/oggenc
caused by MachineCSE invalidly merging two separate DYNALLOC insns.
llvm-svn: 167855
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
llvm-svn: 161396
change.
Move the "Not profitable, avoid CSE!" debug message next to where we fail the
check for profitability and use a different message for avoiding CSE due to
being in different register classes.
llvm-svn: 159729
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
llvm-svn: 150100
define physical registers. It's currently very restrictive, only catching
cases where the CE is in an immediate (and only) predecessor. But it catches
a surprising large number of cases.
rdar://10660865
llvm-svn: 147827
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
our current machine instruction defines a register with the same register class
as what's being replaced. This showed up in the SPEC 403.gcc benchmark, where it
would ICE because a tail call was expecting one register class but was given
another. (The machine instruction verifier catches this situation.)
<rdar://problem/10270968>
llvm-svn: 141830
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
Original message:
Teach MachineCSE how to do simple cross-block CSE involving physregs. This allows, for example, eliminating duplicate cmpl's on x86. Part of rdar://problem/8259436 .
llvm-svn: 130877