Summary:
As we have discussed previously (e.g. in D63992 / D64090 / [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]]), `sub` instruction
can almost be considered non-canonical. While we do convert `sub %x, C` -> `add %x, -C`,
we sparsely do that for non-constants. But we should.
Here, i propose to interpret `sub %x, %y` as `add (sub 0, %y), %x` IFF the negation can be sinked into the `%y`
This has some potential to cause endless combine loops (either around PHI's, or if there are some opposite transforms).
For former there's `-instcombine-negator-max-depth` option to mitigate it, should this expose any such issues
For latter, if there are still any such opposing folds, we'd need to remove the colliding fold.
In any case, reproducers welcomed!
Reviewers: spatel, nikic, efriedma, xbolva00
Reviewed By: spatel
Subscribers: xbolva00, mgorny, hiraditya, reames, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68408
These are mostly replicated from D78430 (instsimplify).
If we implement more general transforms for instcombine,
then we probably don't need to add that complexity to instsimplify.
Before we kept the first applicable `ident_t*` during deduplication of
runtime calls. The problem is that "first" is dependent on the iteration
order of a DenseMap. Since the proper solution, which is to combine the
information from all `ident_t*`, should be deterministic on its own, we
will not try to make the iteration order deterministic. Instead, we will
create a fresh `ident_t*` if there is not a unique existing `ident_t*`
to pick.
With clang option -funique-internal-linkage-symbols, symbols with
internal linkage get names with the module hash appended.
Differential Revision: https://reviews.llvm.org/D78243
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.
Differential Revision: https://reviews.llvm.org/D78413
Summary:
The indexing operator in Scatterer may result in building new
instructions. When using multiple such operators in a function
argument list the order in which we build instructions depend on
argument evaluation order (which is undefined in C++).
This patch avoid such problems by expanding the components using
the [] operator prior to the function call.
Problem was seen when comparing output, while builing LLVM with
different compilers (clang vs gcc).
Reviewers: foad, cameron.mcinally, uabelho
Reviewed By: foad
Subscribers: hiraditya, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78455
bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
This is the widen shuffle elements enhancement to D76727.
It builds on the analysis and simplifications in
D77881 and rG6a7e958a423e.
The phase ordering tests show that we can simplify inverse
shuffles across a binop in both directions (widen/narrow or
narrow/widen) now.
There's another potential transform visible in some of the
remaining TODOs - move a bitcasted operand of a shuffle
after the shuffle.
Differential Revision: https://reviews.llvm.org/D78371
See PR45510:
https://bugs.llvm.org/show_bug.cgi?id=45510
We had partial coverage for some of these patterns, so removing duplicate tests
with the complete set in the new test file.
First-order recurrences require special treatment when they are live-out;
such treatment is provided by fixFirstOrderRecurrence(), so they should be
included in AllowedExit set.
(Should probably have been included originally in D16197.)
Fixes PR45526: AllowedExit set is used by prepareToFoldTailByMasking() to
check whether the treatment for live-outs also holds when folding the tail,
which is not (yet) the case for first-order recurrences.
Differential Revision: https://reviews.llvm.org/D78210
Cost-modeling decisions are tied to the compute interleave groups
(widening decisions, scalar and uniform values). When invalidating the
interleave groups, those decisions also need to be invalidated.
Otherwise there is a mis-match during VPlan construction.
VPWidenMemoryRecipes created initially are left around w/o converting them
into VPInterleave recipes. Such a conversion indeed should not take place,
and these gather/scatter recipes may in fact be right. The crux is leaving around
obsolete CM_Interleave (and dependent) markings of instructions along with
their costs, instead of recalculating decisions, costs, and recipes.
Alternatively to forcing a complete recompute later on, we could try
to selectively invalidate the decisions connected to the interleave
groups. But we would likely need to run the uniform/scalar value
detection parts again anyways and the extra complexity is probably not
worth it.
Fixes PR45572.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78298
I've always found the "findValue" a little odd and
inconsistent with other things in SDB.
This simplfifies the code in SDB to just handle a splat constant
address or a 2 operand GEP in the same BB. This removes the
need for "findValue" since the operands to the GEP are
guaranteed to be available. The splat constant handling is
new, but was needed to avoid regressions due to constant
folding combining GEPs created in CGP.
CGP is now responsible for canonicalizing gather/scatters into
this form. The pattern I'm using for scalarizing, a scalar GEP
followed by a GEP with an all zeroes index, seems to be subject
to constant folding that the insertelement+shufflevector was not.
Differential Revision: https://reviews.llvm.org/D76947
Summary:
Changes the type of the @__typeid_.*_unique_member imports we generate
for unique return value optimization from i8 to [0 x i8]. This
prevents assuming that these imports do not alias, such as when
two unique return values occur in the same vtable.
Fixes PR45393.
Reviewers: tejohnson, pcc
Reviewed By: pcc
Subscribers: aganea, hiraditya, rnk, george.burgess.iv, dblaikie, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77421
Since we use the fact that some uses are droppable in the Attributor we
need to handle them explicitly when we replace uses. As an example, an
assumed dead value can have live droppable users. In those we cannot
replace the value simply by an undef. Instead, we either drop the uses
(via `dropDroppableUses`) or keep them as they are. In this patch we do
both, depending on the situation. For values that are dead but not
necessarily removed we keep droppable uses around because they contain
information we might be able to use later. For values that are removed
we drop droppable uses explicitly to avoid replacement with undef.
The handling of the `returned` attribute in D75815 did miss the case
where the argument is (bit)casted to a different type. This is
explicitly allowed by the language reference and exposed by the
Attributor.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D77977
The check if globals were accessed was not always working because two
bits are set for NO_GLOBAL_MEM. The new check works also if only on kind
of globals (internal/external) is accessed.
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588
The current strategy LICM uses when sinking for debuginfo is
that of picking the debug location of one of the uses.
This causes stepping to be wrong sometimes, see, e.g. PR45523.
This patch introduces a generalization of getMergedLocation(),
that operates on a vector of locations instead of two, and try
to merge all them together, and use the new API in LICM.
<rdar://problem/61750950>
We can eliminate MemoryDefs of objects not accessible after the function
returns (e.g. alloca), if there are no reads between the MemoryDef and
any function exits. We can stop traversing paths that completely
overwrite the memory location of the MemoryDef.
This patch was split off D73763.
Reviewers: dmgreen, bryant, asbirlea, Tyker, efriedma, george.burgess.iv
Reviewed By: asbirlea, george.burgess.iv
Differential Revision: https://reviews.llvm.org/D77736
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.
This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D77198
This restores commit 2ada8e2525.
Originally reverted with commit 44e09b59b8.
Fix an assert introduced in 41ed5d856c1: a phi with a single predecessor and a
mask is a valid case which is already supported by the code.
Differential Revision: https://reviews.llvm.org/D78115
This reverts commit 2ada8e2525.
Buildbots produced compilation errors which I was not able to quickly
reproduce locally. Need more time to investigate.
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.
This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D77198
Summary:
Currently, the internal options -vectorize-loops, -vectorize-slp, and
-interleave-loops do not have much practical effect. This is because
they are used to initialize the corresponding flags in the pass
managers, and those flags are then unconditionally overwritten when
compiling via clang or via LTO from the linkers. The only exception was
-vectorize-loops via opt because of some special hackery there.
While vectorization could still be disabled when compiling via clang,
using -fno-[slp-]vectorize, this meant that there was no way to disable
it when compiling in LTO mode via the linkers. This only affected
ThinLTO, since for regular LTO vectorization is done during the compile
step for scalability reasons. For ThinLTO it is invoked in the LTO
backends. See also the discussion on PR45434.
This patch makes it so the internal options can actually be used to
disable these optimizations. Ultimately, the best long term solution is
to mark the loops with metadata (similar to the approach used to fix
-fno-unroll-loops in D77058), but this enables a shorter term
workaround, and actually makes these internal options useful.
I constant propagated the initial values of these internal flags into
the pass manager flags (for some reasons vectorize-loops and
interleave-loops were initialized to true, while vectorize-slp was
initialized to false). As mentioned above, they are overwritten
unconditionally so this doesn't have any real impact, and these initial
values aren't particularly meaningful.
I then changed the passes to check the internl values and return without
performing the associated optimization when false (I changed the default
of -vectorize-slp to true so the options behave similarly). I was able
to remove the hackery in opt used to get -vectorize-loops=false to work,
as well as a special option there used to disable SLP vectorization.
Finally, I changed thinlto-slp-vectorize-pm.c to:
a) Only test SLP (moved the loop vectorization checking to a new test).
b) Use code that is slp vectorized when it is enabled, and check that
instead of whether the pass is enabled.
c) Test the new behavior of -vectorize-slp.
d) Test both pass managers.
The loop vectorization (and associated interleaving) testing I moved to
a new thinlto-loop-vectorize-pm.c test, with several changes:
a) Changed the flags on the interleaving testing so that it will
actually interleave, and check that.
b) Test the new behavior of -vectorize-loops and -interleave-loops.
c) Test both pass managers.
Reviewers: fhahn, wmi
Subscribers: hiraditya, steven_wu, dexonsmith, cfe-commits, davezarzycki, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77989
Summary:
This patch fix the following issues in InstCombiner::visitGetElementPtrInst
1. Skip for scalable type if transformation requires fixed size number of
vector element.
2. Skip for scalable type if transformation relies on compile-time known type
alloc size.
3. Use VectorType::getElementCount when scalable property is used to construct
new VectorType.
4. Use TypeSize::getKnownMinSize when minimal size of a scalable type is valid to determine GEP 'inbounds'.
5. Explicitly call TypeSize::getFixedSize to avoid implicit type conversion to uint64_t.
Reviewers: sdesmalen, efriedma, spatel, ctetreau
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78081
Summary:
AbstractCallSite::getCallbackUses() does not check that callback callee index from
the callback metadata does not exceed the total number of call arguments. This patch
add such validation check.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78112
D77635 added support to recognise primary induction variables for counting-down
loops. This allows us to fold the scalar tail loop into the main vector body,
which we need for MVE tail-predication. This adds some ARM tail-folding test
cases that we want to support.
This test was extracted from D76838, which implemented a different approach to
reverse and thus find a primary induction variable.
This patch fixes 2 related bugs in ADCE:
- `performDeadCodeElimination` does not report changes if it did ONLY
CFG changes (affects both old and new pass managers);
- When control flow removal is enabled, new pass manager does not
drop CFG analyses.
Both can lead to incorrect loop info after ADCE that does only CFG changes.
Differential Revision: https://reviews.llvm.org/D78103
Reviewed By: Denis Antrushin