Commit Graph

85 Commits

Author SHA1 Message Date
Philip Pfaffe 9438585fe4 [DA][NewPM] Handle transitive dependencies in the new-pm version of DA
Summary:
The analysis result of DA caches pointers to AA, SCEV, and LI, but it
never checks for their invalidation. Fix that.

Reviewers: chandlerc, dmgreen, bogner

Reviewed By: dmgreen

Subscribers: hiraditya, bollu, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D56381

llvm-svn: 352986
2019-02-03 12:25:41 +00:00
Hiroshi Inoue c437f310a5 [NFC] fix trivial typos in comments
llvm-svn: 352602
2019-01-30 05:26:31 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Philip Pfaffe efb5ad1c58 [DA][NewPM] Add a printerpass and port the testsuite
The new-pm version of DA is untested. Testing requires a printer, so
add that and use it in the existing DA tests.

Differential Revision: https://reviews.llvm.org/D56386

llvm-svn: 350624
2019-01-08 14:06:58 +00:00
George Burgess IV 6ef8002c2c Replace most users of UnknownSize with LocationSize::unknown(); NFC
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).

This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.

llvm-svn: 344186
2018-10-10 21:28:44 +00:00
David Green 8699492304 [DA] Delinearise AddRecs if we can prove they don't wrap
We can prove that some delinearized subscripts do not wrap around to become
negative by the fact that they are from inbound geps of load/store locations.
This helps improve the delinearisation in cases where we can't prove that they
are non-negative from SCEV alone.

Differential Revision: https://reviews.llvm.org/D48481

llvm-svn: 335481
2018-06-25 15:13:26 +00:00
David Green d143c65de3 [DA] Enable -da-delinearize by default
This enables da-delinearize in Dependence Analysis for delinearizing array
accesses into multiple dimensions. This can help to increase the power of
Dependence analysis on multi-dimensional arrays and prevent having to fall
back to the slower and less accurate MIV tests. It adds static checks on the
bounds of the arrays to ensure that one dimension doesn't overflow into
another, and brings our code in line with our tests.

Differential Revision: https://reviews.llvm.org/D45872

llvm-svn: 335217
2018-06-21 11:53:16 +00:00
David Green 2911b3a07a [DA] Fix direction vectors for weakZeroSrcSIV
Both weakZeroSrcSIV and weakZeroDstSIV are currently giving the same
direction vectors. Fix weakZeroSrcSIVtest by flipping the directions
it gives.

Differential Revision: https://reviews.llvm.org/D46678

llvm-svn: 333658
2018-05-31 14:55:29 +00:00
Nicola Zaghen d34e60ca85 Rename DEBUG macro to LLVM_DEBUG.
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.

In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.

Differential Revision: https://reviews.llvm.org/D43624

llvm-svn: 332240
2018-05-14 12:53:11 +00:00
Nico Weber 432a38838d IWYU for llvm-config.h in llvm, additions.
See r331124 for how I made a list of files missing the include.
I then ran this Python script:

    for f in open('filelist.txt'):
        f = f.strip()
        fl = open(f).readlines()

        found = False
        for i in xrange(len(fl)):
            p = '#include "llvm/'
            if not fl[i].startswith(p):
                continue
            if fl[i][len(p):] > 'Config':
                fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
                found = True
                break
        if not found:
            print 'not found', f
        else:
            open(f, 'w').write(''.join(fl))

and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.

No intended behavior change.

llvm-svn: 331184
2018-04-30 14:59:11 +00:00
David Green 5ef933b02c [DA] Improve alias checking in dependence analysis
Improve the alias analysis to account for cases where we
know that src/dst pairs cannot alias due to things like
TBAA. As we know they are noalias, we know no dependency
can occur. Also fixes issues around the size parameter
to AA being incorrect.

Differential Revision: https://reviews.llvm.org/D42381

llvm-svn: 329692
2018-04-10 11:37:21 +00:00
Renato Golin 038ede2a16 [NFC] Consolidate six getPointerOperand() utility functions into one place
There are six separate instances of getPointerOperand() utility.
LoopVectorize.cpp has one of them,
and I don't want to create a 7th one while I'm trying to move
LoopVectorizationLegality into a separate file
(eventual objective is to move it to Analysis tree).

See http://lists.llvm.org/pipermail/llvm-dev/2018-February/120999.html
for llvm-dev discussions

Closes D43323.

Patch by Hideki Saito <hideki.saito@intel.com>.

llvm-svn: 327173
2018-03-09 21:05:58 +00:00
Sebastian Pop bf6e1c26cf DA: remove uses of GEP, only ask SCEV
It's been quite some time the Dependence Analysis (DA) is broken,
as it uses the GEP representation to "identify" multi-dimensional arrays.
It even wrongly detects multi-dimensional arrays in single nested loops:

from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6
;; for (long int i = 0; i < 50; i++) {
;; A[i][3*i - 6] = i;
;; *B++ = A[i][i];

DA used to detect two subscripts, which makes no sense in the LLVM IR
or in C/C++ semantics, as there are no guarantees as in Fortran of
subscripts not overlapping into a next array dimension:

maximum nesting levels = 1
SrcPtrSCEV = %A
DstPtrSCEV = %A
using GEPs
subscript 0
    src = {0,+,1}<nuw><nsw><%for.body>
    dst = {0,+,1}<nuw><nsw><%for.body>
    class = 1
    loops = {1}
subscript 1
    src = {-6,+,3}<nsw><%for.body>
    dst = {0,+,1}<nuw><nsw><%for.body>
    class = 1
    loops = {1}
Separable = {}
Coupled = {1}

With the current patch, DA will correctly work on only one dimension:

maximum nesting levels = 1
SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body>
DstSCEV = {%A,+,404}<%for.body>
subscript 0
    src = {(-2424 + %A)<nsw>,+,1212}<%for.body>
    dst = {%A,+,404}<%for.body>
    class = 1
    loops = {1}
Separable = {0}
Coupled = {}

This change removes all uses of GEP from DA, and we now only rely
on the SCEV representation.

The patch does not turn on -da-delinearize by default, and so the DA analysis
will be more conservative in the case of multi-dimensional memory accesses in
nested loops.

I disabled some interchange tests, as the DA is not able to disambiguate
the dependence anymore. To make DA stronger, we may need to
compute a bound on the number of iterations based on the access functions
and array dimensions.

The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to
avoid checking for snippets of LLVM IR: this form of checking is very hard to
maintain. Instead, we now check for output of the pass that are more meaningful
than dozens of lines of LLVM IR. Some tests now require -debug messages and thus
only enabled with asserts.

Patch written by Sebastian Pop and Aditya Kumar.

Differential Revision: https://reviews.llvm.org/D35430

llvm-svn: 326837
2018-03-06 21:55:59 +00:00
Aaron Ballman 615eb47035 Reverting r315590; it did not include changes for llvm-tblgen, which is causing link errors for several people.
Error LNK2019 unresolved external symbol "public: void __cdecl `anonymous namespace'::MatchableInfo::dump(void)const " (?dump@MatchableInfo@?A0xf4f1c304@@QEBAXXZ) referenced in function "public: void __cdecl `anonymous namespace'::AsmMatcherEmitter::run(class llvm::raw_ostream &)" (?run@AsmMatcherEmitter@?A0xf4f1c304@@QEAAXAEAVraw_ostream@llvm@@@Z) llvm-tblgen D:\llvm\2017\utils\TableGen\AsmMatcherEmitter.obj 1

llvm-svn: 315854
2017-10-15 14:32:27 +00:00
Don Hinton 3e0199f7eb [dump] Remove NDEBUG from test to enable dump methods [NFC]
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.

Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.

Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.

Differential Revision: https://reviews.llvm.org/D38406

llvm-svn: 315590
2017-10-12 16:16:06 +00:00
Hiroshi Inoue a86c920b1e fix typos in comments and error messages; NFC
llvm-svn: 307533
2017-07-10 12:44:25 +00:00
Brendon Cahoon cb8c7b912d [DependenceAnalysis] Make sure base objects are the same when comparing GEPs
The dependence analysis was returning incorrect information when using the GEPs
to compute dependences. The analysis uses the GEP indices under certain
conditions, but was doing it incorrectly when the base objects of the GEP are
aliases, but pointing to different locations in the same array.

This patch adds another check for the base objects. If the base pointer SCEVs
are not equal, then the dependence analysis should fall back on the path
that uses the whole SCEV for the dependence check. This fixes PR33567.

Differential Revision: https://reviews.llvm.org/D34702

llvm-svn: 307203
2017-07-05 21:35:47 +00:00
Francis Visoiu Mistrih b52e036600 BitVector: add iterators for set bits
Differential revision: https://reviews.llvm.org/D32060

llvm-svn: 303227
2017-05-17 01:07:53 +00:00
Matthias Braun 8c209aa877 Cleanup dump() functions.
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html

For reference:
- Public headers should just declare the dump() method but not use
  LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void MyClass::dump() {
    // print stuff to dbgs()...
  }
  #endif

llvm-svn: 293359
2017-01-28 02:02:38 +00:00
Chandler Carruth dab4eae274 [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

llvm-svn: 287783
2016-11-23 17:53:26 +00:00
Benjamin Kramer aa2091505f Apply clang-tidy's modernize-loop-convert to lib/Analysis.
Only minor manual fixes. No functionality change intended.

llvm-svn: 273816
2016-06-26 17:27:42 +00:00
Benjamin Kramer c321e53402 Apply most suggestions of clang-tidy's performance-unnecessary-value-param
Avoids unnecessary copies. All changes audited & pass tests with asan.
No functional change intended.

llvm-svn: 272190
2016-06-08 19:09:22 +00:00
Benjamin Kramer 46e38f3678 Avoid copies of std::strings and APInt/APFloats where we only read from it
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.

llvm-svn: 272126
2016-06-08 10:01:20 +00:00
Chandler Carruth 49c22190d0 [PM] Port of the DepndenceAnalysis to the new PM.
Ported DA to the new PM by splitting the former DependenceAnalysis Pass
into a DependenceInfo result type and DependenceAnalysisWrapperPass type
and adding a new PM-style DependenceAnalysis analysis pass returning the
DependenceInfo.

Patch by Philip Pfaffe, most of the review by Justin.

Differential Revision: http://reviews.llvm.org/D18834

llvm-svn: 269370
2016-05-12 22:19:39 +00:00
Brendon Cahoon be2da82cd8 [DependenceAnalysis] Refactor uses of getConstantPart. NFC.
Rather than checking for the SCEV type prior to calling
getContantPart, perform the checks in the function. This reduces
the number of places where the checks are needed.

Differential Revision: http://reviews.llvm.org/D19241

llvm-svn: 266759
2016-04-19 16:46:57 +00:00
Brendon Cahoon 86f783e315 [DependenceAnalysis] Check if result of getConstantPart is null
A seg-fault occurs due to a reference of a null pointer, which is
the value returned by getConstantPart. This function returns
null if the constant part is not found. The code that calls this
function needs to check for the null return value.

Differential Revision: http://reviews.llvm.org/D18718

llvm-svn: 265319
2016-04-04 18:13:18 +00:00
Sanjoy Das 0de2feceb1 [SCEV] Add and use SCEVConstant::getAPInt; NFCI
llvm-svn: 255921
2015-12-17 20:28:46 +00:00
Sanjoy Das 2aacc0ecca [SCEV] Introduce ScalarEvolution::getOne and getZero.
Summary:
It is fairly common to call SE->getConstant(Ty, 0) or
SE->getConstant(Ty, 1); this change makes such uses a little bit
briefer.

I've refactored the call sites I could find easily to use getZero /
getOne.

Reviewers: hfinkel, majnemer, reames

Subscribers: sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D12947

llvm-svn: 248362
2015-09-23 01:59:04 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Hal Finkel 0ef2b10f16 Fix how DependenceAnalysis calls delinearization
Fix how DependenceAnalysis calls delinearization, mirroring what is done in
Delinearization.cpp (mostly by making sure to call getSCEVAtScope before
delinearizing, and by removing the unnecessary 'Pairs == 1' check).

Patch by Vaivaswatha Nagaraj!

llvm-svn: 245408
2015-08-19 02:56:36 +00:00
Chandler Carruth 2f1fd1658f [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Chandler Carruth 50fee93926 [PM/AA] Simplify the AliasAnalysis interface by removing a wrapper
around a DataLayout interface in favor of directly querying DataLayout.

This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.

No functionality changed.

llvm-svn: 244189
2015-08-06 02:05:46 +00:00
David Blaikie 47039dcfa9 -Wdeprecated-clean: Fix cases of violating the rule of 5 in ways that are deprecated in C++11
llvm-svn: 243788
2015-07-31 21:37:09 +00:00
Tobias Grosser 3cdc37c5bc Move delinearization from SCEVAddRecExpr to ScalarEvolution
The expressions we delinearize do not necessarily have to have a SCEVAddRecExpr
at the outermost level. At this moment, the additional flexibility  is not
exploited in LLVM itself, but in Polly we will soon soonish use this
functionality. For LLVM, this change should not affect existing functionality
(which is covered by test/Analysis/Delinearization/)

llvm-svn: 240952
2015-06-29 14:42:48 +00:00
Chandler Carruth c3f49eb451 [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.

Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.

My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.

[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.

Differential Revision: http://reviews.llvm.org/D10495

llvm-svn: 240255
2015-06-22 02:16:51 +00:00
Jingyue Wu a84feb1727 [DependenceAnalysis] Extend unifySubscriptType for handling coupled subscript groups.
Summary:
In continuation to an earlier commit to DependenceAnalysis.cpp by jingyue (r222100), the type for all subscripts in a coupled group need to be the same since constraints from one subscript may be propagated to another during testing. During testing, new SCEVs may be created and the operands for these need to be the same.
This patch extends unifySubscriptType() to work on lists of subscript pairs, ensuring a common extended type for all of them.

Test Plan:
Added a test case to NonCanonicalizedSubscript.ll which causes dependence analysis to crash without this fix.

All regression tests pass.

Reviewers: spop, sebpop, jingyue

Reviewed By: jingyue

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9698

llvm-svn: 238573
2015-05-29 16:58:08 +00:00
James Molloy c0661aeaf8 [DependenceAnalysis] Fix for PR21585: collectUpperBound triggers asserts
collectUpperBound hits an assertion when the back edge count is wider then the desired type.

If that happens, truncate the backedge count.

Patch by Philip Pfaffe!

llvm-svn: 237439
2015-05-15 12:17:22 +00:00
Karthik Bhat 8d7f7eda14 Fix a memory corruption in Dependency Analysis.
This crash occurs due to memory corruption when trying to update dependency
direction based on Constraints.

This crash was observed during lnt regression of Polybench benchmark test case dynprog.

Review: http://reviews.llvm.org/D8059
llvm-svn: 231788
2015-03-10 14:32:02 +00:00
Karthik Bhat 8d0099bdab Fix a crash in Dependency Analysis.
This crash in Dependency analysis is because we assume here that in case of UsefulGEP
both source and destination have the same number of operands which may not be true.
This incorrect assumption results in crash while populating Pairs. Fix the same.

This crash was observed during lnt regression for code such as-
  struct s{
    int A[10][10];
    int C[10][10][10]; 
  } S;
  void dep_constraint_crash_test(int k,int N)  {
     for( int i=0;i<N;i++)
       for( int j=0;j<N;j++)
         S.A[0][0] = S.C[0][0][k];
  }
Review: http://reviews.llvm.org/D8162

llvm-svn: 231784
2015-03-10 13:31:03 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
NAKAMURA Takumi 478559a532 Reformat.
llvm-svn: 231336
2015-03-05 01:25:19 +00:00
NAKAMURA Takumi d8422ce0ec Revert r231103, "FullDependenceAnalysis: Avoid using the (deprecated in C++11) copy ctor"
It is miscompiled on msc18.

llvm-svn: 231335
2015-03-05 01:25:12 +00:00
NAKAMURA Takumi e110d641a0 Revert r231104, "unique_ptrify FullDependenceAnalysis::DV", to appease msc18 C2280.
llvm-svn: 231334
2015-03-05 01:25:06 +00:00
David Blaikie 5b240485b7 unique_ptrify FullDependenceAnalysis::DV
Making this type a little harder to abuse (see workaround relating to
use of the implicit copy ctor in the prior commit)

llvm-svn: 231104
2015-03-03 19:20:18 +00:00
David Blaikie c5771c214e FullDependenceAnalysis: Avoid using the (deprecated in C++11) copy ctor
llvm-svn: 231103
2015-03-03 19:20:16 +00:00
Benjamin Kramer 0a446fd56c Add missing includes. make_unique proliferated everywhere.
llvm-svn: 230909
2015-03-01 21:28:53 +00:00
Chandler Carruth 4f8f307c77 [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

llvm-svn: 226373
2015-01-17 14:16:18 +00:00
Jingyue Wu 0fa125a77d [DependenceAnalysis] Allow subscripts of different types
Summary:
Several places in DependenceAnalysis assumes both SCEVs in a subscript pair
share the same integer type. For instance, isKnownPredicate calls
SE->getMinusSCEV(X, Y) which asserts X and Y share the same type. However,
DependenceAnalysis fails to ensure this assumption when producing a subscript
pair, causing tests such as NonCanonicalizedSubscript to crash. With this
patch, DependenceAnalysis runs unifySubscriptType before producing any
subscript pair, ensuring the assumption.

Test Plan:
Added NonCanonicalizedSubscript.ll on which DependenceAnalysis before the fix
crashed because subscripts have different types.

Reviewers: spop, sebpop, jingyue

Reviewed By: jingyue

Subscribers: eliben, meheff, llvm-commits

Differential Revision: http://reviews.llvm.org/D6289

llvm-svn: 222100
2014-11-16 16:52:44 +00:00
NAKAMURA Takumi d0e13af22c Reformat partially, where I touched for whitespace changes.
llvm-svn: 220773
2014-10-28 11:54:52 +00:00
NAKAMURA Takumi 335a7bcf1e Untabify and whitespace cleanups.
llvm-svn: 220771
2014-10-28 11:53:30 +00:00