matchSelectPattern attempts to see through casts which mask min/max
patterns from being more obvious. Under certain circumstances, it would
misidentify a sequence of instructions as a min/max because it assumed
that folding casts would preserve the result. This is not the case for
floating point <-> integer casts.
This fixes PR27575.
llvm-svn: 268086
This was being treated the same as private, which has an immediate
offset. For unknown, it probably means it's for a computation not
actually being used for accessing memory, so it should not have a
nontrivial addressing mode.
llvm-svn: 268002
We need to keep loop hints from the original loop on the new vector loop.
Failure to do this meant that, for example:
void foo(int *b) {
#pragma clang loop unroll(disable)
for (int i = 0; i < 16; ++i)
b[i] = 1;
}
this loop would be unrolled. Why? Because we'd vectorize it, thus dropping the
hints that unrolling should be disabled, and then we'd unroll it.
llvm-svn: 267970
I closely followed the precedents set by the vectorizer:
* With -Rpass-missed, the loop is reported with further details pointing
to -Rpass--analysis.
* -Rpass-analysis reports the details why distribution has failed.
* Regardless of -Rpass*, when distribution fails for a loop where
distribution was forced with the pragma, a warning is produced according
to -Wpass-failed. In this case the analysis info is also printed even
without -Rpass-analysis.
llvm-svn: 267952
When inlining a call site with llvm.mem.parallel_loop_access metadata, this
metadata needs to be propagated to all cloned memory-accessing instructions.
Otherwise, inlining parts of the loop body will invalidate the annotation.
With this functionality, we now vectorize the following as expected:
void Body(int *res, int *c, int *d, int *p, int i) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
Body(res, c, d, p, i);
}
}
llvm-svn: 267949
The MOVMSK instructions copies a vector elements' sign bits to the low bits of a scalar register and zeros the high bits.
This patch adds MOVMSK support to SimplifyDemandedUseBits so that its aware that the upper bits are known to be zero. It also removes the call to MOVMSK if none of the lower bits are actually required and just returns zero.
Differential Revision: http://reviews.llvm.org/D19614
llvm-svn: 267873
This patch implements the transformation that promotes indirect calls to
conditional direct calls when the indirect-call value profile meta-data is
available.
Differential Revision: http://reviews.llvm.org/D17864
llvm-svn: 267815
The sink cast machinery is supposed to sink casts as close to their user
as possible. However, an EH pad is the first instruction in it's basic
block. Don't sink if the user is an EH pad.
This fixes PR27536.
llvm-svn: 267767
"inferattrs" will deduce the attribute, but it will be too late for
many optimizations. Set it ourselves when creating the call.
Differential Revision: http://reviews.llvm.org/D17598
llvm-svn: 267762
We previously disallowed interleaved load groups that may cause us to
speculatively access memory out-of-bounds (r261331). We did this by ensuring
each load group had an access corresponding to the first and last member.
Instead of bailing out for these interleaved groups, this patch enables us to
peel off the last vector iteration, ensuring that we execute at least one
iteration of the scalar remainder loop. This solution was proposed in the
review of the previous patch.
Differential Revision: http://reviews.llvm.org/D19487
llvm-svn: 267751
This change adds a new hook for estimating the cost of vector extracts followed
by zero- and sign-extensions. The motivating example for this change is the
SMOV and UMOV instructions on AArch64. These instructions move data from vector
to general purpose registers while performing the corresponding extension
(sign-extend for SMOV and zero-extend for UMOV) at the same time. For these
operations, TargetTransformInfo can assume the extensions are free and only
report the cost of the vector extract. The SLP vectorizer has been updated to
make use of the new hook.
Differential Revision: http://reviews.llvm.org/D18523
llvm-svn: 267725
Summary:
D19403 adds a new pragma for loop distribution. This change adds
support for the corresponding metadata that the pragma is translated to
by the FE.
As part of this I had to rethink the flag -enable-loop-distribute. My
goal was to be backward compatible with the existing behavior:
A1. pass is off by default from the optimization pipeline
unless -enable-loop-distribute is specified
A2. pass is on when invoked directly from opt (e.g. for unit-testing)
The new pragma/metadata overrides these defaults so the new behavior is:
B1. A1 + enable distribution for individual loop with the pragma/metadata
B2. A2 + disable distribution for individual loop with the pragma/metadata
The default value whether the pass is on or off comes from the initiator
of the pass. From the PassManagerBuilder the default is off, from opt
it's on.
I moved -enable-loop-distribute under the pass. If the flag is
specified it overrides the default from above.
Then the pragma/metadata can further modifies this per loop.
As a side-effect, we can now also use -enable-loop-distribute=0 from opt
to emulate the default from the optimization pipeline. So to be precise
this is the new behavior:
C1. pass is off by default from the optimization pipeline
unless -enable-loop-distribute or the pragma/metadata enables it
C2. pass is on when invoked directly from opt
unless -enable-loop-distribute=0 or the pragma/metadata disables it
Reviewers: hfinkel
Subscribers: joker.eph, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D19431
llvm-svn: 267672
Summary:
It is incorrect to compare TripCount (which is BECount + 1)
with extraiters (or Count) to check if we should enter unrolled
loop or not, because TripCount can potentially overflow
(when BECount is max unsigned integer).
While comparing BECount with (Count - 1) is overflow safe and
therefore correct.
Reviewer: hfinkel
Differential Revision: http://reviews.llvm.org/D19256
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 267662
When encountering a non-local pointer, LVI would eagerly scan the block for dereferences of the given object to prove the pointer to be non null. That's all well and good, but *then* we'd go recurse through our input blocks. As a result, we could end up scanning each and every block we traverse, even if the final definition was obviously non null or we found a constant value somewhere up the chain. The previous code papered over this by using the isKnownNonNull routine from value tracking. This made the duplication less painful in the common case.
Instead, we know do the block scan only *after* we've gotten the recursive results back. This lets us stop scanning individual blocks as soon as we've determined it to be non-null in any predecessor block and use our usual merge rules to propagate that information cheaply through successor blocks. For a pointer which can be found non-null, this does strictly less work and sometimes substaintially so.
Note that the case where we *can't* prove something non-null is still the really expensive case. We end up scanning each and every block looking for a dereference and never end up finding one.
llvm-svn: 267642
As pointed out by John Regehr over in http://reviews.llvm.org/D19485, LVI was being incredibly stupid about applying its transfer rules. Rather than gathering local facts from the expression itself, it was simply giving up entirely if one of the inputs was overdefined. This greatly impacts the precision of the overall analysis and makes it far more fragile as well.
This patch builds on 267609 which did the same thing for unary casts.
llvm-svn: 267620
Essentially, I was using the wrong size function. For types which were sized, but not primitive, I wasn't getting a useful size for the operand and failed an assert. I fixed this, and also added a guard that the input is a sized type. Test case is for the original mistake. I'm not sure how to actually exercise the sized type check.
llvm-svn: 267618
We need the default ratio to be sufficiently large that it triggers transforms
based on block frequency info (BFI) and plays well with the recently introduced
BranchProbability used by CGP.
Differential Revision: http://reviews.llvm.org/D19435
llvm-svn: 267615
As pointed out by John Regehr over in http://reviews.llvm.org/D19485, LVI was being incredibly stupid about applying its transfer rules. Rather than gathering local facts from the expression itself, it was simply giving up entirely if one of the inputs was overdefined. This greatly impacts the precision of the overall analysis and makes it far more fragile as well.
This patch implements only the unary operation case. Once this is in, I'll implement the same for the binary operations.
Differential Revision: http://reviews.llvm.org/D19492
llvm-svn: 267609
The destination buffer that sprintf uses is restrict qualified, we do
not need to worry about derived pointers referenced via format
specifiers.
This reverts commit r267580.
llvm-svn: 267605
sprintf doesn't read or copy the terminating null byte from it's string
operands. sprintf will append it's own after processing all of the
format specifiers.
This fixes PR27526.
llvm-svn: 267580
Summary:
Instead of using maximum IR weight as the basic block weight, this patch uses the voting algorithm to find the most likely weight for the basic block. This can effectively avoid the cases when some IRs are annotated incorrectly due to code motion of the profiled binary.
This patch also updates propagate.ll unittest to include discriminator in the input file so that it is testing something meaningful.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19301
llvm-svn: 267519
When SimplifyCFG merges identical instructions from both sides of a diamond, it
can preserve !llvm.mem.parallel_loop_access (as it does with most of the other
metadata). There's no real data or control dependency change in this case.
llvm-svn: 267515
I really thought we were doing this already, but we were not. Given this input:
void Test(int *res, int *c, int *d, int *p) {
for (int i = 0; i < 16; i++)
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
we did not vectorize the loop. Even with "assume_safety" the check that we
don't if-convert conditionally-executed loads (to protect against
data-dependent deferenceability) was not elided.
One subtlety: As implemented, it will still prefer to use a masked-load
instrinsic (given target support) over the speculated load. The choice here
seems architecture specific; the best option depends on how expensive the
masked load is compared to a regular load. Ideally, using the masked load still
reduces unnecessary memory traffic, and so should be preferred. If we'd rather
do it the other way, flipping the order of the checks is easy.
The LangRef is updated to make explicit that llvm.mem.parallel_loop_access also
implies that if conversion is okay.
Differential Revision: http://reviews.llvm.org/D19512
llvm-svn: 267514
This patch is what was the "instcombine" portion of D14185, with an additional
test added (see julia_pseudovec in test/Transforms/InstCombine/insert-val-extract-elem.ll).
The patch causes instcombine to replace sequences of extractelement-insertvalue-store
that act essentially like a bitcast followed by a store.
Differential review: http://reviews.llvm.org/D14260
llvm-svn: 267482
The current logic assumes that any constant global will never be SRA'd. I presume this is because normally constant globals can be pushed into their uses and deleted. However, that sometimes can't happen (which is where you really want SRA, so the elements that can be eliminated, are!).
There seems to be no reason why we can't SRA constants too, so let's do it.
llvm-svn: 267393
As discussed on D19318, if we only demand the first element of a DIVSS/DIVSD intrinsic, then reduce to a FDIV call. This matches the existing FADD/FSUB/FMUL patterns.
llvm-svn: 267359
Split from D17490. This patch improves support for determining the demanded vector elements through SSE scalar intrinsics:
1 - demanded vector element support for unary and some extra binary scalar intrinsics (RCP/RSQRT/SQRT/FRCZ and ADD/CMP/DIV/ROUND).
2 - addss/addsd get simplified to a fadd call if we aren't interested in the pass through elements
3 - if we don't need the lowest element of a scalar operation then just use the first argument (the pass through elements) directly
We can add support for propagating demanded elements through any equivalent packed SSE intrinsics in a future patch (these wouldn't use the pass through patterns).
Differential Revision: http://reviews.llvm.org/D19318
llvm-svn: 267357
This patch improves support for determining the demanded vector elements through SSE scalar intrinsics:
1 - recognise that we only need the lowest element of the second input for binary scalar operations (and all the elements of the first input)
2 - recognise that the roundss/roundsd intrinsics use the lowest element of the second input and the remaining elements from the first input
Differential Revision: http://reviews.llvm.org/D17490
llvm-svn: 267356
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
This intrinsic takes two arguments, ``%ptr`` and ``%offset``. It loads
a 32-bit value from the address ``%ptr + %offset``, adds ``%ptr`` to that
value and returns it. The constant folder specifically recognizes the form of
this intrinsic and the constant initializers it may load from; if a loaded
constant initializer is known to have the form ``i32 trunc(x - %ptr)``,
the intrinsic call is folded to ``x``.
LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.
Differential Revision: http://reviews.llvm.org/D18367
llvm-svn: 267223
Summary:
We can fold compares to false when two distinct allocations within a
function are compared for equality.
Patch by Anna Thomas!
Reviewers: majnemer, reames, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19390
llvm-svn: 267214
Extend the type canonicalization logic to work for unordered atomic loads and stores. Note that while this change itself is fairly simple and low risk, there's a reasonable chance this will expose problems in the backends by suddenly generating IR they wouldn't have seen before. Anything of this nature will be an existing bug in the backend (you could write an atomic float load), but this will definitely change the frequency with which such cases are encountered. If you see problems, feel free to revert this change, but please make sure you collect a test case.
llvm-svn: 267210
Summary: This change will shorten memset if the beginning of memset is overwritten by later stores.
Reviewers: hfinkel, eeckstein, dberlin, mcrosier
Subscribers: mgrang, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18906
llvm-svn: 267197
In the next change, I am generalizing the function
findStringMetadataForLoop and I want to make sure I don't break this.
Looks like there was no coverage for this so far.
llvm-svn: 267182
Summary: eq imply [u|s]ge and [u|s]le are true.
Remove redundant logic by implementing isImpliedFalseByMatchingCmp(Pred1, Pred2)
as isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)).
llvm-svn: 267177
Summary: [u|s]gt and [u|s]lt imply [u|s]ge and [u|s]le are true, respectively.
I've simplified the existing tests and added additional tests to cover the new
cases mentioned above. I've also added tests for all the cases where the
first compare doesn't imply anything about the second compare.
llvm-svn: 267171
A followup commit will replace these tests with simplified and more inclusive
tests. The diff is unreadable if this were to be done in a single commit.
llvm-svn: 267170
We take the intersection of overflow flags while CSE'ing.
This permits us to consider two instructions with different overflow
behavior to be replaceable.
llvm-svn: 267153
Summary:
When optimizing PHIs which have inputs floating point binary
operators, we preserve all IR flags except the fast math
flags.
This change removes the logic which tracked some of the IR flags
(no wrap, exact) and replaces it by doing an and on the IR flags of
all inputs to the PHI - which will also handle the fast math
flags.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19370
llvm-svn: 267139
EarlyCSE had inconsistent behavior with regards to flag'd instructions:
- In some cases, it would pessimize if the available instruction had
different flags by not performing CSE.
- In other cases, it would miscompile if it replaced an instruction
which had no flags with an instruction which has flags.
Fix this by being more consistent with our flag handling by utilizing
andIRFlags.
llvm-svn: 267111
Summary:
If we know that the pointer allocated within a function does not escape,
we can fold away comparisons that are done with global pointers
Patch by Anna Thomas!
Reviewers: reames, majnemer, sanjoy
Subscribers: mgrang, mcrosier, majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D19276
llvm-svn: 267035
This builds on 266999 which made FindAvailableValue do the right thing. Tests included show the newly enabled transforms and those which disabled either due to conservatism or correctness requirements.
llvm-svn: 267006
This change adds a couple of test cases to make sure FindAvailableLoadedValue does the right thing. At the moment, the code added is dead, but separating it makes follow on changes far more obvious.
llvm-svn: 266999
Summary:
`llvm.guard(false)` always bails out of the current compilation unit, so
we can prune any control flow following it.
Reviewers: hfinkel, pcc, reames
Subscribers: majnemer, reames, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19245
llvm-svn: 266955
Summary:
The function importer already decided what symbols need to be pulled
in. Also these magically added ones will not be in the export list
for the source module, which can confuse the internalizer for
instance.
Reviewers: tejohnson, rafael
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19096
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266948
No matter what value you OR in to A, the result of (or A, B) is going to be UGE A. When A and B are positive, it's SGE too. If A is negative, OR'ing a value into it can't make it positive, but can increase its value closer to -1, therefore (or A, B) is SGE A. Working through all possible combinations produces this truth table:
```
A is
+, -, +/-
F F F + B is
T F ? -
? F ? +/-
```
The related optimizations are flipping the 'slt' for 'sge' which always NOTs the result (if the result is known), and swapping the LHS and RHS while swapping the comparison predicate.
There are more idioms left to implement (aren't there always!) but I've stopped here because any more would risk becoming unreasonable for reviewers.
llvm-svn: 266939
Summary:
This patch prevents importing from (and therefore exporting from) any
module with a "llvm.used" local value. Local values need to be promoted
and renamed when importing, and their presense on the llvm.used variable
indicates that there are opaque uses that won't see the rename. One such
example is a use in inline assembly.
See also the discussion at:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098047.html
As part of this, move collectUsedGlobalVariables out of Transforms/Utils
and into IR/Module so that it can be used more widely. There are several
other places in LLVM that used copies of this code that can be cleaned
up as a follow on NFC patch.
Reviewers: joker.eph
Subscribers: pcc, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18986
llvm-svn: 266877
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer. I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.
This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.
Differential Revision: http://reviews.llvm.org/D19098
llvm-svn: 266818
This patch improves SimplifyCFG to catch cases like:
if (a < b) {
if (a > b) <- known to be false
unreachable;
}
Phabricator Revision: http://reviews.llvm.org/D18905
llvm-svn: 266767
The fast register-allocator cannot cope with inter-block dependencies without
spilling. This is fine for ldrex/strex loops coming from atomicrmw instructions
where any value produced within a block is dead by the end, but not for
cmpxchg. So we lower a cmpxchg at -O0 via a pseudo-inst that gets expanded
after regalloc.
Fortunately this is at -O0 so we don't have to care about performance. This
simplifies the various axes of expansion considerably: we assume a strong
seq_cst operation and ensure ordering via the always-present DMB instructions
rather than v8 acquire/release instructions.
Should fix the 32-bit part of PR25526.
llvm-svn: 266679
This reverts commit r266477.
This commit introduces cyclic dependency. This commit has "Analysis" depend on "ProfileData",
while "ProfileData" depends on "Object", which depends on "BitCode", which
depends on "Analysis".
llvm-svn: 266619
I accidentally replaced `mayBeOverridden` with `!isInterposable`.
Remove the negation and add a test case that would've caught this.
Many thanks to Håkan Hjort for spotting this!
llvm-svn: 266551
To be able to work accurately on the reference graph when taking
decision about internalizing, promoting, renaming, etc. We need
to have the alias information explicit.
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266517
Allow explicit section for indirectly called functions in cfi-icall.
Jumptables for functions in the same type class must be contiguous, so they
always go to the default text section.
Fixes PR25079.
llvm-svn: 266486
Adds an interface to get ProfileSummary for a module and makes InlineCost use ProfileSummary to get max function count.
Differential Revision: http://reviews.llvm.org/D18622
llvm-svn: 266477
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.
I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.
llvm-svn: 266464
InstCombine wants to optimize compares of calls to fabs with zero.
However, we didn't have the necessary legality checking to verify that
the function call had the same behavior as fabs.
llvm-svn: 266452
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This is almost identical to:
http://reviews.llvm.org/rL264527
This doesn't solve PR27344; it just allows the profile weights to survive.
To solve the bug, we need to use the profile weights in the backend.
llvm-svn: 266442
Summary:
This lets us add this pass to the IR pass manager unconditionally; it
will simply not do anything on targets without branch divergence.
Reviewers: tra
Subscribers: llvm-commits, jingyue, rnk, chandlerc
Differential Revision: http://reviews.llvm.org/D18625
llvm-svn: 266398
If the size of an AST entry changes, we also need to make sure we perform
necessary alias set merges, as the new size may overlap pointers in other sets.
We happen to run into this with memset, because memset allows an entry for a
i8* pointer to have a decidedly non-i8 size.
This fixes PR27262.
Differential Revision: http://reviews.llvm.org/D18939
llvm-svn: 266381
Some SIMD implementations are not IEEE-754 compliant, for example ARM's NEON.
This patch teaches the loop vectorizer to only allow transformations of loops
that either contain no floating-point operations or have enough allowance
flags supporting lack of precision (ex. -ffast-math, Darwin).
For that, the target description now has a method which tells us if the
vectorizer is allowed to handle FP math without falling into unsafe
representations, plus a check on every FP instruction in the candidate loop
to check for the safety flags.
This commit makes LLVM behave like GCC with respect to ARM NEON support, but
it stops short of fixing the underlying problem: sub-normals. Neither GCC
nor LLVM have a flag for allowing sub-normal operations. Before this patch,
GCC only allows it using unsafe-math flags and LLVM allows it by default with
no way to turn it off (short of not using NEON at all).
As a first step, we push this change to make it safe and in sync with GCC.
The second step is to discuss a new sub-normal's flag on both communitues
and come up with a common solution. The third step is to improve the FastMath
flags in LLVM to encode sub-normals and use those flags to restrict NEON FP.
Fixes PR16275.
llvm-svn: 266363
https://llvm.org/bugs/show_bug.cgi?id=27105
We can check if all bits outside of a constant mask are set with a
single constant.
As noted in the bug report, although this form should be considered the
canonical IR, backends may want to transform this into an 'andn' / 'andc'
comparison against zero because that could be a single machine instruction.
Differential Revision: http://reviews.llvm.org/D18842
llvm-svn: 266362
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:
+ ConstantHoisting was modifying switch statements. This is simply invalid,
the cases must remain integer constants no matter the notional cost.
+ ConstantHoisting was mangling alloca instructions in the entry block. These
should be handled by FrameLowering, so constants actually have a cost of 0.
Worse, the resulting bitcasts meant they became dynamic allocas.
rdar://25707382
llvm-svn: 266260
LLVM optimization passes may reduce a profiled target expression
to a constant. Removing runtime calls at such instrumentation points
would help speedup the runtime of the instrumented program.
llvm-svn: 266229
Summary:
To be able to work accurately on the reference graph when taking decision
about internalizing, promoting, renaming, etc. We need to have the alias
information explicit.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266214
This patch fixes calculating of builtin_object_size if it depends on a
condition. Before this patch compiler did not know how to calculate the
object size when it finds a condition that cannot be eliminated.
This patch enables calculating of builtin_object_size even in case when
condition cannot be eliminated by choosing minimum or maximum value as a
result from condition. Choosing minimum or maximum value from condition
is based on the second argument of __builtin_object_size function.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D18438
llvm-svn: 266193
Remove an ad-hoc transform in InstCombine and replace it with more
general machinery (ValueTracking, InstructionSimplify and VectorUtils).
This fixes PR27332.
llvm-svn: 266175
This bug was introduced with:
http://reviews.llvm.org/rL262269
AVX masked loads are specified to set vector lanes to zero when the high bit of the mask
element for that lane is zero:
"If the mask is 0, the corresponding data element is set to zero in the load form of these
instructions, and unmodified in the store form." --Intel manual
Differential Revision: http://reviews.llvm.org/D19017
llvm-svn: 266148
Summary:
For correct handling of alias to nameless
function, we need to be able to refer them through a GUID in the summary.
Here we name them using a hash of the non-private global names in the module.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18883
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266132
Summary:
Let keep llvm-as "dumb": it converts textual IR to bitcode. This
commit removes the dependency from llvm-as to libLLVMAnalysis.
We'll add back summary in llvm-as if we get to a textual
representation for it at some point. In the meantime, opt seems
like a better place for that.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19032
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266131
(Recommit of r266002, with r266011, r266016, and not accidentally
including an extra unused/uninitialized element in LibcallRoutineNames)
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266115
This is a resubmittion of 263158 change.
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 266086
They broke the msan bot.
Original message:
Add __atomic_* lowering to AtomicExpandPass.
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw,and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266062
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
r237193 fix handling of alloca size / align in MergeFunctions, but only tested one and didn't follow FunctionComparator::cmpOperations's usual comparison pattern. It also didn't update Instruction.cpp:haveSameSpecialState which I'll do separately.
llvm-svn: 266022
This is more robust to changes in the link ordering.
Differential Revision: http://reviews.llvm.org/D18946
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266018
Add StackProtector to SafeStack. This adds limited protection against
data corruption in the caller frame. Current implementation treats
all stack protector levels as -fstack-protector-all.
llvm-svn: 266004
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266002
This patch ensures that when we detect first-order recurrences, we reject a phi
node if its previous value is also a phi node. During vectorization the initial
and previous values of the recurrence are shuffled together to create the value
for the current iteration. However, phi nodes are not widened like other
instructions. This fixes PR27246.
Differential Revision: http://reviews.llvm.org/D18971
llvm-svn: 265983
This is the straightforward fix for PR26760:
https://llvm.org/bugs/show_bug.cgi?id=26760
But we still need to make some changes to generalize this helper function
and then send the lshr case into here.
llvm-svn: 265960
Summary:
This is the first step in also serializing the index out to LLVM
assembly.
The per-module summary written to bitcode is moved out of the bitcode
writer and to a new analysis pass (ModuleSummaryIndexWrapperPass).
The pass itself uses a new builder class to compute index, and the
builder class is used directly in places where we don't have a pass
manager (e.g. llvm-as).
Because we are computing summaries outside of the bitcode writer, we no
longer can use value ids created by the bitcode writer's
ValueEnumerator. This required changing the reference graph edge type
to use a new ValueInfo class holding a union between a GUID (combined
index) and Value* (permodule index). The Value* are converted to the
appropriate value ID during bitcode writing.
Also, this enables removal of the BitWriter library's dependence on the
Analysis library that was previously required for the summary computation.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18763
llvm-svn: 265941
Summary:
If we can prove that an op.with.overflow intrinsic does not overflow, we
can get rid of the intrinsic, and replace it with non-wrapping
arithmetic.
Reviewers: atrick, regehr
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18685
llvm-svn: 265913
Vectorization cost of uniform load wasn't correctly calculated.
As a result, a simple loop that loads a uniform value wasn't vectorized.
Differential Revision: http://reviews.llvm.org/D18940
llvm-svn: 265901
Summary:
The llvm cos intrinsic currently does not propagate undef's. This change
transforms cos(undef) to null value or 0.
There are 2 test cases added as well.
Patch by Anna Thomas!
Reviewers: sanjoy
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D18863
llvm-svn: 265825
We had a select of a cast of a select but attempted to replace the outer
select with the inner select dispite their incompatible types.
Patch by Anton Korobeynikov!
This fixes PR27236.
llvm-svn: 265805
InstCombine cannot effectively remove redundant assumptions without them
registered in the assumption cache. The vectorizer can create identical
assumptions but doesn't register them with the cache, resulting in
slower compile times because InstCombine tries to reason about a lot
more assumptions.
Fix this by registering the cloned assumptions.
llvm-svn: 265800
This re-commits r265535 which was reverted in r265541 because it
broke the windows bots. The problem was that we had a PointerIntPair
which took a pointer to a struct allocated with new. The problem
was that new doesn't provide sufficient alignment guarantees.
This pattern was already present before r265535 and it just happened
to work. To fix this, we now separate the PointerToIntPair from the
ExitNotTakenInfo struct into a pointer and a bool.
Original commit message:
Summary:
When the backedge taken codition is computed from an icmp, SCEV can
deduce the backedge taken count only if one of the sides of the icmp
is an AddRecExpr. However, due to sign/zero extensions, we sometimes
end up with something that is not an AddRecExpr.
However, we can use SCEV predicates to produce a 'guarded' expression.
This change adds a method to SCEV to get this expression, and the
SCEV predicate associated with it.
In HowManyGreaterThans and HowManyLessThans we will now add a SCEV
predicate associated with the guarded backedge taken count when the
analyzed SCEV expression is not an AddRecExpr. Note that we only do
this as an alternative to returning a 'CouldNotCompute'.
We use new feature in Loop Access Analysis and LoopVectorize to analyze
and transform more loops.
Reviewers: anemet, mzolotukhin, hfinkel, sanjoy
Subscribers: flyingforyou, mcrosier, atrick, mssimpso, sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17201
llvm-svn: 265786
This reverts commit r265765, reapplying r265759 after changing a call from
LocalAsMetadata::get to ValueAsMetadata::get (and adding a unit test). When a
local value is mapped to a constant (like "i32 %a" => "i32 7"), the new debug
intrinsic operand may no longer be pointing at a local.
http://lab.llvm.org:8080/green/job/clang-stage1-configure-RA_build/19020/
The previous coommit message follows:
--
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265768
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265759
When GVN wants to re-interpret an already available value in a smaller
type, it needs to right-shift the value on big-endian systems to ensure
the correct bytes are accessed. The shift value is the difference of
the sizes of the two types.
This is correct as long as both types occupy multiples of full bytes.
However, when one of them is a sub-byte type like i1, this no longer
holds true: we still need to shift, but only to access the correct
*byte*. Accessing bits within the byte requires no shift in either
endianness; e.g. an i1 resides in the least-significant bit of its
containing byte on both big- and little-endian systems.
Therefore, the appropriate shift value to be used is the difference of
the *storage* sizes of the two types. This is already handled correctly
in one place where such a shift takes place (GetStoreValueForLoad), but
is incorrect in two other places: GetLoadValueForLoad and
CoerceAvailableValueToLoadType.
This patch changes both places to use the storage size as well.
Differential Revision: http://reviews.llvm.org/D18662
llvm-svn: 265684
Updating dominators for exit-blocks of the unrolled loops is not enough,
as shown in PR27157. The proper way is to update dominators for all
dominance-children of original loop blocks.
llvm-svn: 265605
Summary:
When the backedge taken codition is computed from an icmp, SCEV can
deduce the backedge taken count only if one of the sides of the icmp
is an AddRecExpr. However, due to sign/zero extensions, we sometimes
end up with something that is not an AddRecExpr.
However, we can use SCEV predicates to produce a 'guarded' expression.
This change adds a method to SCEV to get this expression, and the
SCEV predicate associated with it.
In HowManyGreaterThans and HowManyLessThans we will now add a SCEV
predicate associated with the guarded backedge taken count when the
analyzed SCEV expression is not an AddRecExpr. Note that we only do
this as an alternative to returning a 'CouldNotCompute'.
We use new feature in Loop Access Analysis and LoopVectorize to analyze
and transform more loops.
Reviewers: anemet, mzolotukhin, hfinkel, sanjoy
Subscribers: flyingforyou, mcrosier, atrick, mssimpso, sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17201
llvm-svn: 265535
To quote the langref "Unlike sqrt in libm, however, llvm.sqrt has
undefined behavior for negative numbers other than -0.0 (which allows
for better optimization, because there is no need to worry about errno
being set). llvm.sqrt(-0.0) is defined to return -0.0 like IEEE sqrt."
This means that it's unsafe to replace sqrt with llvm.sqrt unless the
call is annotated with nnan.
Thanks to Hal Finkel for pointing this out!
llvm-svn: 265521
r265273 added Mapper::mapBlockAddress, which delays mapping a
blockaddress value until the function has a body. The condition was
backwards, and should be checking Function::empty instead of
GlobalValue::isDeclaration.
llvm-svn: 265508
Don't emit a gc.result for a statepoint lowered from
@llvm.experimental.deoptimize since the call into __llvm_deoptimize is
effectively noreturn. Instead follow the corresponding gc.statepoint
with an "unreachable".
llvm-svn: 265485
utils/update_test_checks.py was improved with:
http://reviews.llvm.org/rL265414
to CHECK-NEXT the first line of the IR function. This ensures that nothing bad
has happened before that.
llvm-svn: 265417
Presently, CodeGenPrepare deletes all nearly empty (only phi and branch)
basic blocks. This pass can delete loop preheaders which frequently creates
critical edges. A preheader can be a convenient place to spill registers to
the stack. If the entrance to a loop body is a critical edge, then spills
may occur in the loop body rather than immediately before it. This patch
protects loop preheaders from deletion in CodeGenPrepare even if they are
nearly empty.
Since the patch alters the CFG, it affects a large number of test cases.
In most cases, the changes are merely cosmetic (basic blocks have different
names or instruction orders change slightly). I am somewhat concerned about
the test/CodeGen/Mips/brdelayslot.ll test case. If the loop preheader is not
deleted, then the MIPS backend does not take advantage of a branch delay
slot. Consequently, I would like some close review by a MIPS expert.
The patch also partially subsumes D16893 from George Burgess IV. George
correctly notes that CodeGenPrepare does not actually preserve the dominator
tree. I think the dominator tree was usually not valid when CodeGenPrepare
ran, but I am using LoopInfo to mark preheaders, so the dominator tree is
now always valid before CodeGenPrepare.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel george.burgess.iv vkalintiris dsanders kbarton cycheng
http://reviews.llvm.org/D16984
llvm-svn: 265397
Direct callees' that are cast to other function prototypes,
show up in the Call/Invoke instructions as ConstantExpr's.
Currently llvm::CallSite's getCalledFunction() fails
to return the callees in such expressions as direct calls.
Value profiling should avoid instrumenting such cases. Mostly NFC.
llvm-svn: 265330
Summary:
Useful for debugging since we lose this correlation after the permodule
summary/VST is read and until we later materialize source modules in the
function importer.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18555
llvm-svn: 265327
Sinking comparisons in CGP can undo the job of hoisting them done
earlier by LICM, and soft-FP makes this an expensive mistake.
A common pattern that produces floating point comparisons uniform
over a loop is an explicit check for division by zero. If the divisor
is hoisted out of the loop, the comparison can also be, but hoisting
the function that unwinds is never legal, since it may cause side
effects in the loop body prior to the unwinding to not be executed.
Differential Revision: http://reviews.llvm.org/D18744
llvm-svn: 265264
Floating point intrinsics in LLVM are generally not speculatively
executed, since most of them are defined to behave the same as libm
functions, which set errno.
However, the only error that can happen when executing ceil, floor,
nearbyint, rint and round libm functions per POSIX.1-2001 is -ERANGE,
and that requires the maximum value of the exponent to be smaller
than the number of mantissa bits, which is not the case with any of
the floating point types supported by LLVM.
The trunc and copysign functions never set errno per per POSIX.1-2001.
Differential Revision: http://reviews.llvm.org/D18643
llvm-svn: 265262
A catchswitch cannot be preceded by another instruction in the same
basic block (other than a PHI node).
Instead, insert the extract element right after the materialization of
the vectorized value. This isn't optimal but is a reasonable compromise
given the constraints of WinEH.
This fixes PR27163.
llvm-svn: 265157
They're not necessary (since the stack pointer is trivially restored on
return), and the way LLVM inserts the stackrestore calls breaks the
IR (we get a stackrestore between the deoptimize call and the return).
llvm-svn: 265101
They're not necessary (since the lifetime of the alloca is trivially
over due to the return), and the way LLVM inserts the lifetime.end
markers breaks the IR (we get a lifetime end marker between the
deoptimize call and the return).
llvm-svn: 265100
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
This patch simply mirrors the attributes we give to @llvm.nvvm.reflect
to the __nvvm_reflect libdevice call. This shaves about 30% of the code
in libdevice away because of CSE opportunities. It's also helps us
figure out that libdevice implementations of transcendental functions
don't have side-effects.
llvm-svn: 265060
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
Widening a PHI requires us to insert a trunc.
The logical place for this trunc is in the same BB as the PHI.
This is not possible if the BB is terminated by a catchswitch.
This fixes PR27133.
llvm-svn: 264926
The TailDup transform was removed in r138841 in 2011, along with most
of the tests for it. This test, however, was missed. Probably because
it had already been XFAIL'd for 3 years at that point (since r52243!)
and continued to fail when the opt flag for -tailduplicate stopped
being valid.
llvm-svn: 264916
This change prevents the loop vectorizer from vectorizing when all of the vector
types it generates will be scalarized. I've run into this problem on the PPC's QPX
vector ISA, which only holds floating-point vector types. The loop vectorizer
will, however, happily vectorize loops with purely integer computation. Here's
an example:
LV: The Smallest and Widest types: 32 / 32 bits.
LV: The Widest register is: 256 bits.
LV: Found an estimated cost of 0 for VF 1 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 1 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 1 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 1 for VF 1 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 1 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 1 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 1 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Scalar loop costs: 3.
LV: Found an estimated cost of 0 for VF 2 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 2 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 2 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 2 for VF 2 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 2 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 2 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 2 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 2 costs: 2.
LV: Found an estimated cost of 0 for VF 4 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 4 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 4 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 4 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 4 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 4 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 4 costs: 1.
...
LV: Selecting VF: 8.
LV: The target has 32 registers
LV(REG): Calculating max register usage:
LV(REG): At #0 Interval # 0
LV(REG): At #1 Interval # 1
LV(REG): At #2 Interval # 2
LV(REG): At #4 Interval # 1
LV(REG): At #5 Interval # 1
LV(REG): VF = 8
The problem is that the cost model here is not wrong, exactly. Since all of
these operations are scalarized, their cost (aside from the uniform ones) are
indeed VF*(scalar cost), just as the model suggests. In fact, the larger the VF
picked, the lower the relative overhead from the loop itself (and the
induction-variable update and check), and so in a sense, picking the largest VF
here is the right thing to do.
The problem is that vectorizing like this, where all of the vectors will be
scalarized in the backend, isn't really vectorizing, but rather interleaving.
By itself, this would be okay, but then the vectorizer itself also interleaves,
and that's where the problem manifests itself. There's aren't actually enough
scalar registers to support the normal interleave factor multiplied by a factor
of VF (8 in this example). In other words, the problem with this is that our
register-pressure heuristic does not account for scalarization.
While we might want to improve our register-pressure heuristic, I don't think
this is the right motivating case for that work. Here we have a more-basic
problem: The job of the vectorizer is to vectorize things (interleaving aside),
and if the IR it generates won't generate any actual vector code, then
something is wrong. Thus, if every type looks like it will be scalarized (i.e.
will be split into VF or more parts), then don't consider that VF.
This is not a problem specific to PPC/QPX, however. The problem comes up under
SSE on x86 too, and as such, this change fixes PR26837 too. I've added Sanjay's
reduced test case from PR26837 to this commit.
Differential Revision: http://reviews.llvm.org/D18537
llvm-svn: 264904
We already try not to truncate PHIs in computeMinimalBitwidths. LoopVectorize can't handle it and we really don't need to, because both induction and reduction PHIs are truncated by other means.
However, we weren't bailing out in all the places we should have, and we ended up by returning a PHI to be truncated, which has caused PR27018.
This fixes PR17018.
llvm-svn: 264852
Prior to this patch, the MemorySSA caching visitor would cache all
calls that it visited. When paired with phi optimization, this can be
problematic. Consider:
define void @foo() {
; 1 = MemoryDef(liveOnEntry)
call void @clobberFunction()
br i1 undef, label %if.end, label %if.then
if.then:
; MemoryUse(??)
call void @readOnlyFunction()
; 2 = MemoryDef(1)
call void @clobberFunction()
br label %if.end
if.end:
; 3 = MemoryPhi(...)
; MemoryUse(?)
call void @readOnlyFunction()
ret void
}
When optimizing MemoryUse(?), we visit defs 1 and 2, so we note to
cache them later. We ultimately end up not being able to optimize
passed the Phi, so we set MemoryUse(?) to point to the Phi. We then
cache the clobbering call for def 1 to be the Phi.
This commit changes this behavior so that we wipe out any calls
added to VisistedCalls while visiting the defs of a phi we couldn't
optimize.
Aside: With this patch, we now can bootstrap clang/LLVM without a
single MemorySSA verifier failure. Woohoo. :)
llvm-svn: 264820
This patch teaches the caching MemorySSA walker a few things:
1. Not to walk Phis we've walked before. It seems that we tried to do
this before, but it didn't work so well in cases like:
define void @foo() {
%1 = alloca i8
%2 = alloca i8
br label %begin
begin:
; 3 = MemoryPhi({%0,liveOnEntry},{%end,2})
; 1 = MemoryDef(3)
store i8 0, i8* %2
br label %end
end:
; MemoryUse(?)
load i8, i8* %1
; 2 = MemoryDef(1)
store i8 0, i8* %2
br label %begin
}
Because we wouldn't put Phis in Q.Visited until we tried to visit them.
So, when trying to optimize MemoryUse(?):
- We would visit 3 above
- ...Which would make us put {%0,liveOnEntry} in Q.Visited
- ...Which would make us visit {%0,liveOnEntry}
- ...Which would make us put {%end,2} in Q.Visited
- ...Which would make us visit {%end,2}
- ...Which would make us visit 3
- ...Which would realize we've already visited everything in 3
- ...Which would make us conservatively return 3.
In the added test-case, (@looped_visitedonlyonce) this behavior would
cause us to give incorrect results. Specifically, we'd visit 4 twice
in the same query, but on the second visit, we'd skip while.cond because
it had been visited, visit if.then/if.then2, and cache "1" as the
clobbering def on the way back.
2. If we try to walk the defs of a {Phi,MemLoc} and see it has been
visited before, just hand back the Phi we're trying to optimize.
I promise this isn't as terrible as it seems. :)
We now insert {Phi,MemLoc} pairs just before walking the Phi's upward
defs. So, we check the cache for the {Phi,MemLoc} pair before checking
if we've already walked the Phi.
The {Phi,MemLoc} pair is (almost?) always guaranteed to have a cache
entry if we've already fully walked it, because we cache as we go.
So, if the {Phi,MemLoc} pair isn't in cache, either:
(a) we must be in the process of visiting it (in which case, we can't
give a better answer in a cache-as-we-go DFS walker)
(b) we visited it, but didn't cache it on the way back (...which seems
to require `ModifyingAccess` to not dominate `StartingAccess`,
so I'm 99% sure that would be an error. If it's not an error, I
haven't been able to get it to happen locally, so I suspect it's
rare.)
- - - - -
As a consequence of this change, we no longer skip upward defs of phis,
so we can kill the `VisitedOnlyOne` check. This gives us better accuracy
than we had before, at the cost of potentially doing a bit more work
when we have a loop.
llvm-svn: 264814
This is effectively NFC, minus the renaming of the options
(-cyclone-prefetch-distance -> -prefetch-distance).
The change was requested by Tim in D17943.
llvm-svn: 264806
During ADCE, track which debug info scopes still have live references
from the code, and delete debug info intrinsics for the dead ones.
These intrinsics describe the locations of variables (in registers or
stack slots). If there's no code left corresponding to a variable's
scope, then there's no way to reference the variable in the debugger and
it doesn't matter what its value is.
I add a DEBUG printout when the described location in an SSA register,
in case it helps some trying to track down why locations get lost.
However, we still delete these; the scope itself isn't attached to any
real code, so the ship has already sailed.
llvm-svn: 264800
Add function soft attribute to the generation of Jump Tables in CodeGen
as initial step towards clang support of gcc's no-jump-table support
Reviewers: hans, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18321
llvm-svn: 264756
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
A DICompileUnit that is not listed in llvm.dbg.cu will cause assertion
failures and/or crashes in the backend. The Verifier should reject this.
rdar://problem/25369499
llvm-svn: 264657
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
Summary:
Add a statistic to count the number of imported functions. Also, add a
new -print-imports option to emit a trace of imported functions, that
works even for an NDEBUG build.
Note that emitOptimizationRemark does not work for the above printing as
it expects a Function object and DebugLoc, neither of which we have
with summary-based importing.
This is part 2 of D18487, the first part was committed separately as
r264536.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18487
llvm-svn: 264537
Reject the following IR as malformed (assuming that %entry, %next are
not in a loop):
next:
%y = phi i32 [ 0, %entry ]
%x = phi i32 [ %y, %entry ]
Such PHI nodes came up in PR26718. While there was no consensus on
whether or not this is valid IR, most opinions on that bug and in a
discussion on the llvm-dev mailing list tended towards a
"strict interpretation" (term by Joseph Tremoulet) of PHI node uses.
Also, the language reference explicitly states that "the use of each
incoming value is deemed to occur on the edge from the corresponding
predecessor block to the current block" and
`DominatorTree::dominates(Instruction*, Use&)` uses this definition as
well.
For the code mentioned in PR15384, clang does not compile to such PHIs
(anymore?). The test case still hangs when replacing `%tmp6` with `%tmp`
in revisions before r176366 (where PR15384 has been fixed). The
occurrence of %tmp6 therefore was probably unintentional. Its value is
not used except in other PHIs.
Reviewers: majnemer, reames, JosephTremoulet, bkramer, grosser, jdoerfert, kparzysz, sanjoy
Differential Revision: http://reviews.llvm.org/D18443
llvm-svn: 264528
Summary:
Now that the summary contains the full reference/call graph, we can
replace the existing function importer that loads and inspect the IR
to iteratively walk the call graph by a traversal based purely on the
summary information. Decouple the actual importing decision from any
IR manipulation.
Reviewers: tejohnson
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18343
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264503
A release fence acts as a publication barrier for stores within the current thread to become visible to other threads which might observe the release fence. It does not require the current thread to observe stores performed on other threads. As a result, we can allow store-load and load-load forwarding across a release fence.
We choose to be much more conservative about stores. In theory, nothing prevents us from shifting a store from after a release fence to before it, and then eliminating the preceeding (previously fenced) store. Doing this without actually moving the second store is likely also legal, but we chose to be conservative at this time.
The LangRef indicates only atomic loads and stores are effected by fences. This patch chooses to be far more conservative then that.
This is the GVN companion to http://reviews.llvm.org/D11434 which applied the same logic in EarlyCSE and has been baking in tree for a while now.
Differential Revision: http://reviews.llvm.org/D11436
llvm-svn: 264472
I didn't notice any significant changes in the actual checks here;
all of these tests already used FileCheck, so a script can batch
update them in one shot.
This commit is just to show the value of automating this process:
We have uniform formatting as opposed to a mish-mash of check
structure that changes based on individual prefs and the current
fashion. This makes it simpler to update when we find a bug or
make an enhancement.
llvm-svn: 264457
This changes RS4GC to lower calls to ``@llvm.experimental.deoptimize``
to gc.statepoints wrapping ``__llvm_deoptimize``, and changes
``callsGCLeafFunction`` to recognize ``@llvm.experimental.deoptimize``
as a non GC leaf function.
I've had to hard code the ``"__llvm_deoptimize"`` name in
RewriteStatepointsForGC; since ``TargetLibraryInfo`` is available only
during codegen. This isn't without precedent in the codebase, so I'm
not overtly concerned.
llvm-svn: 264456
We try to hoist the insertion point as high as possible to encourage
sharing. However, we must be careful not to hoist into a catchswitch as
it is both an EHPad and a terminator.
llvm-svn: 264344
isDependenceDistanceOfOne asserts that the store and the load access
through the same type. This function is also used by
removeDependencesFromMultipleStores so we need to make sure we filter
out mismatching types before reaching this point.
Now we do this when the initial candidates are gathered.
This is a refinement of the fix made in r262267.
Fixes PR27048.
llvm-svn: 264313
There are a few bugs in the walker that this patch addresses.
Primarily:
- Caching can break when we have multiple BBs without phis
- We weren't optimizing some phis properly
- Because of how the DFS iterator works, there were times where we
wouldn't cache any results of our DFS
I left the test cases with FIXMEs in, because I'm not sure how much
effort it will take to get those to work (read: We'll probably
ultimately have to end up redoing the walker, or we'll have to come up
with some creative caching tricks), and more test coverage = better.
Differential Revision: http://reviews.llvm.org/D18065
llvm-svn: 264180
CGP modifies the domtree in some cases, so saying that it preserves the
domtree is a lie. We'll be able to selectively preserve it with the new
pass manager.
Differential Revision: http://reviews.llvm.org/D16893
llvm-svn: 264099
When you have multiple LCSSA (single-operand) PHIs that are converted
into two-operand PHIs due to versioning, only assert that the PHI
currently being converted has a single operand. I.e. we don't want to
check PHIs that were converted earlier in the loop.
Fixes PR27023.
Thanks to Karl-Johan Karlsson for the minimized testcase!
llvm-svn: 264081
It's a bug fix.
For rerolled loops SE trip count remains unchanged. It leads to incorrect work of the next passes.
My patch just resets SE info for rerolled loop forcing SE to re-evaluate it next time it requested.
I also added a verifier call in the exisitng test to be sure no invalid SE data remain. Without my fix this test would fail with -verify-scev.
Differential Revision: http://reviews.llvm.org/D18316
llvm-svn: 264051
If we have a BB with only MemoryDefs, live-in calculations will ignore
it. This means we get results like this:
define void @foo(i8* %p) {
; 1 = MemoryDef(liveOnEntry)
store i8 0, i8* %p
br i1 undef, label %if.then, label %if.end
if.then:
; 2 = MemoryDef(1)
store i8 1, i8* %p
br label %if.end
if.end:
; 3 = MemoryDef(1)
store i8 2, i8* %p
ret void
}
...When there should be a MemoryPhi in the `if.end` BB.
This patch fixes that behavior.
llvm-svn: 263991
Summary:
replaceCongruentIVs can break LCSSA when trying to replace IV increments
since it tries to replace all uses of a phi node with another phi node
while both of the phi nodes are not necessarily in the processed loop.
This will cause an assert in IndVars.
To fix this, we add a check to make sure that the replacement maintains
LCSSA.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18266
llvm-svn: 263941
The sinpi/cospi can be replaced with sincospi to remove unnecessary
computations. However, we need to make sure that the calls are within
the same function!
This fixes PR26993.
llvm-svn: 263875
Summary:
ThinLTO is relying on linkInModule to import selected function.
However a lot of "magic" was hidden in linkInModule and the IRMover,
who would rename and promote global variables on the fly.
This is moving to an approach where the steps are decoupled and the
client is reponsible to specify the list of globals to import.
As a consequence some test are changed because they were relying on
the previous behavior which was importing the definition of *every*
single global without control on the client side.
Now the burden is on the client to decide if a global has to be imported
or not.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18122
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263863
While not strictly necessary, since we don't support large integer
types, this avoids bugs due to silent truncation from uint64_t to a
32-bit unsigned (e.g. DL.isLegalInteger(DL.getTypeSizeInBits(Ty) )
This fixes PR26972.
Differential Revision: http://reviews.llvm.org/D18258
llvm-svn: 263850
The loop on IVOperand's incoming values assumes IVOperand to be an
induction variable on the loop over which `S Pred X` is invariant;
otherwise loop invariant incoming values to IVOperand are not guaranteed
to dominate the comparision.
This fixes PR26973.
llvm-svn: 263827
Summary:
It can hurt performance to prefetch ahead too much. Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.
Reviewers: hfinkel
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17949
llvm-svn: 263772
Summary:
And use this TTI for Cyclone. As it was explained in the original RFC
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758), the HW
prefetcher work up to 2KB strides.
I am also adding tests for this and the previous change (D17943):
* Cyclone prefetching accesses with a large stride
* Cyclone not prefetching accesses with a small stride
* Generic Aarch64 subtarget not prefetching either
Reviewers: hfinkel
Subscribers: aemerson, rengolin, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17945
llvm-svn: 263771
Summary:
Use the new LoopVersioning facility (D16712) to add noalias metadata in
the vector loop if we versioned with memchecks. This can enable some
optimization opportunities further down the pipeline (see the included
test or the benchmark improvement quoted in D16712).
The test also covers the bug I had in the initial version in D16712.
The vectorizer did not previously use LoopVersioning. The reason is
that the vectorizer performs its transformations in single shot. It
creates an empty single-block vector loop that it then populates with
the widened, if-converted instructions. Thus creating an intermediate
versioned scalar loop seems wasteful.
So this patch (rather than bringing in LoopVersioning fully) adds a
special interface to LoopVersioning to allow the vectorizer to add
no-alias annotation while still performing its own versioning.
As the vectorizer propagates metadata from the instructions in the
original loop to the vector instructions we also check the pointer in
the original instruction and see if LoopVersioning can add no-alias
metadata based on the issued memchecks.
Reviewers: hfinkel, nadav, mzolotukhin
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17191
llvm-svn: 263744
Summary:
If we decide to version a loop to benefit a transformation, it makes
sense to record the now non-aliasing accesses in the newly versioned
loop. This allows non-aliasing information to be used by subsequent
passes.
One example is 456.hmmer in SPECint2006 where after loop distribution,
we vectorize one of the newly distributed loops. To vectorize we
version this loop to fully disambiguate may-aliasing accesses. If we
add the noalias markers, we can use the same information in a later DSE
pass to eliminate some dead stores which amounts to ~25% of the
instructions of this hot memory-pipeline-bound loop. The overall
performance improves by 18% on our ARM64.
The scoped noalias annotation is added in LoopVersioning. The patch
then enables this for loop distribution. A follow-on patch will enable
it for the vectorizer. Eventually this should be run by default when
versioning the loop but first I'd like to get some feedback whether my
understanding and application of scoped noalias metadata is correct.
Essentially my approach was to have a separate alias domain for each
versioning of the loop. For example, if we first version in loop
distribution and then in vectorization of the distributed loops, we have
a different set of memchecks for each versioning. By keeping the scopes
in different domains they can conveniently be defined independently
since different alias domains don't affect each other.
As written, I also have a separate domain for each loop. This is not
necessary and we could save some metadata here by using the same domain
across the different loops. I don't think it's a big deal either way.
Probably the best is to review the tests first to see if I mapped this
problem correctly to scoped noalias markers. I have plenty of comments
in the tests.
Note that the interface is prepared for the vectorizer which needs the
annotateInstWithNoAlias API. The vectorizer does not use LoopVersioning
so we need a way to pass in the versioned instructions. This is also
why the maps have to become part of the object state.
Also currently, we only have an AA-aware DSE after the vectorizer if we
also run the LTO pipeline. Depending how widely this triggers we may
want to schedule a DSE toward the end of the regular pass pipeline.
Reviewers: hfinkel, nadav, ashutosh.nema
Subscribers: mssimpso, aemerson, llvm-commits, mcrosier
Differential Revision: http://reviews.llvm.org/D16712
llvm-svn: 263743