Add a log dump command to dump logs to a file. This only works for
channels that have a log handler associated that supports dumping. For
now that's limited to the circular log handler, but more could be added
in the future.
Differential revision: https://reviews.llvm.org/D128557
This commit modifies the AsmPrinter to avoid emitting any zero-sized symbols to
the .debug_aranges table, by rounding their size up to 1. Entries with zero
length violate the DWARF 5 spec, which states:
> Each descriptor is a triple consisting of a segment selector, the beginning
> address within that segment of a range of text or data covered by some entry
> owned by the corresponding compilation unit, followed by the non-zero length
> of that range.
In practice, these zero-sized entries produce annoying warnings in lld and
cause GNU binutils to truncate the table when parsing it.
Other parts of LLVM, such as DWARFDebugARanges in the DebugInfo module
(specifically the appendRange method), already avoid emitting zero-sized
symbols to .debug_aranges, but not comprehensively in the AsmPrinter. In fact,
the AsmPrinter does try to avoid emitting such zero-sized symbols when labels
aren't involved, but doesn't when the symbol to emitted is a difference of two
labels; this patch extends that logic to handle the case in which the symbol is
defined via labels.
Furthermore, this patch fixes a bug in which `available_externally` symbols
would cause unpredictable values to be emitted into the `.debug_aranges` table
under certain circumstances. In practice I don't believe that this caused
issues up until now, but the root cause of this bug--an invalid DenseMap
lookup--triggered failures in Chromium when combined with an earlier version of
this patch. Therefore, this patch fixes that bug too.
This is a revised version of diff D126257, which was reverted due to breaking
tests. The now-reverted version of this patch didn't distinguish between
symbols that didn't have their size reported to the DwarfDebug handler and
those that had their size reported to be zero. This new version of the patch
instead restricts the special handling only to the symbols whose size is
definitively known to be zero.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D126835
Also, improve the test for nasty macros to define min and max, so this
will be caught in the future.
Differential Revision: https://reviews.llvm.org/D128655
This patch memorize compatible LLVM types in `LLVM::isCompatibleType` in
order to avoid redundant works.
This is especially useful when the size of program is big and there are
multiple occurrences of some deeply nested LLVM struct types, in which
case we can gain quite some speedups with this patch.
Differential Revision: https://reviews.llvm.org/D127918
This patch adds three new LLVM intrinsic operations: llvm.intr.vastart/copy/end.
And its translation from LLVM IR.
This effectively removes a restriction, imposed by 0126dcf1f0, where
non-external functions in LLVM dialect cannot be variadic. At that time
it was not clear how LLVM intrinsics are going to be modeled, which
indirectly affects va_start/copy/end, the core intrinsics used in
variadic functions. But since we have LLVM intrinsics as normal
MLIR operations, it's not a problem anymore.
Differential Revision: https://reviews.llvm.org/D127540
Add a check to detect that the profiled binary was build with position
independent code. Add a test with a pie binary to which can be reused
later when support is added. Also clean up the error messages with
trailing colons.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D128564
We did not properly handle using CREATETHIN in an MRI script and
attempting to use ADDLIB to add the contents of a regular archive. This
fix outputs a meaningful error message in this case and provides some
more testing.
Differential Revision: https://reviews.llvm.org/D128067
MSVC was issuing "illegal conversion; more than one user-defined
conversion has been implicitly applied" as a warning on this code.
Explicitly calling .str() causes a StringRef to be materialized so
that a second user-defined conversion is not required.
This solves a format specifier warning for char32_t being converted to
an unsigned integer type, and multiple format specifier warnings for
size_t being converted to long.
Implementing target in_reduction by wrapping target task with host task with in_reduction and if clause. This is in compliance with OpenMP 5.0 section: 2.19.5.6.
So, this
```
for (int i=0; i<N; i++) {
res = res+i
}
```
will become
```
#pragma omp task in_reduction(+:res) if(0)
#pragma omp target map(res)
for (int i=0; i<N; i++) {
res = res+i
}
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D125669
Implement support for the "t" action that is used to stop a thread.
Normally this action is used only in non-stop mode. However, there's
no technical reason why it couldn't be also used in all-stop mode,
e.g. to express "resume all threads except ..." (`t:...;c`).
While at it, add a more complete test for vCont correctly resuming
a subset of program's threads.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D126983
Support for optimisation flags in LLVM Flang was originally added in
https://reviews.llvm.org/D128043. That patch focused on LLVM
middle-end/optimisation pipelines. With this patch, Flang will
additionally configure LLVM backend pass pipelines accordingly. This
behavior is consistent with Clang.
New hook is added to translate compiler optimisation flags (e.g. `-O3`)
into backend optimisation level: `getCGOptLevel`. Identical hooks are
available in Clang and LLVM. In other words, the meaning of these
optimisation flags remains consistent with other sub-projects that use
LLVM backends.
Differential Revision: https://reviews.llvm.org/D128050
The global ctor evaluator currently handles by checking whether the
memset memory is already zero, and skips it in that case. However,
it only actually checks the first byte of the memory being set.
This patch extends the code to check all bytes being set. This is
done byte-by-byte to avoid converting undef values to zeros in
larger reads. However, the handling is still not completely correct,
because there might still be padding bytes (though probably this
doesn't matter much in practice, as I'd expect global variable
padding to be zero-initialized in practice).
Mostly fixes https://github.com/llvm/llvm-project/issues/55859.
Differential Revision: https://reviews.llvm.org/D128532
This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.)
Differential Revision: https://reviews.llvm.org/D128423
Add a missing "#if !SANITIZER_GO" guard for a call to DumpProcessMap
in the Finalize hook (needed to build an updated Go race detector syso
image).
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D128641
Add a failure return value and bufferization options argument. This is to keep a subsequent change smaller.
Differential Revision: https://reviews.llvm.org/D128278
It turns out that the Docker images on CI instances are not updated
based on what's in this file, but instead when a new image is pushed
to ldionne/libcxx-builder on DockerHub. So this is effectively useless.
These intrinsics will be needed to convert between fixed-length vectors
and scalable vectors.
This operation will be needed for VLS (vector-length specific)
vectorization, when interfacing with vector functions or intrinsics that
take scalable vectors as operands in a context where the length of our
vectors is known or assumed at compile time, but we still want to
generate scalable vector instructions.
Differential Revision: https://reviews.llvm.org/D127100
On SPARC, leaf function optimization omits the register window sliding (and the associated register name changes). This might result in miscompilation of procedures containing inline assembly, as some of the register constraints used may interfere with the register usage of optimized functions, so we disable leaf procedure optimization on those procedures to prevent it from happening.
This is a continuation of patch D102342 by @LemonBoy, the original comment is reproduced below:
> Leaf functions allow the compiler to omit the setup and teardown of a frame pointer, therefore avoiding the exchange of the in/out register. According to the SPARC architecture manual every reference to %i0-%i5 should be replaced with %o0-o5, if the target register is already in use a further remapping step to %g1-%g7 is required to free the output register.
>
> Add a simple check to make sure not to stomp on any output register that's already in use.
Reviewed By: dcederman
Differential Revision: https://reviews.llvm.org/D128263
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
These tests were left behind or only partially upstreamed during
the lower code upstreaming.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128634
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Deciding to load an arbitrary global based on whether the entire module is
being built for long calls is pretty clearly spurious, and in fact the existing
indirect logic is sufficient.
Previously, we'd use raw pointers when the debug mode was enabled,
which means we wouldn't get out-of-range checking with std::span's
iterators.
This patch introduces a new class called __bounded_iter which can
be used to wrap iterators and make them carry around bounds-related
information. This allows iterators to assert when they are dereferenced
outside of their bounds.
As a fly-by change, this commit removes the _LIBCPP_ABI_SPAN_POINTER_ITERATORS
knob. Indeed, not using a raw pointer as the iterator type is useful to
avoid users depending on properties of raw pointers in their code.
This is an alternative to D127401.
Differential Revision: https://reviews.llvm.org/D127418
These tests were left behind during the upstreaming of parts lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128632
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
When a `nullptr` is assigned to a pointer variable, it is wrapped in a `ImplicitCastExpr` with cast kind `CK_NullTo(Member)Pointer`. This patch assigns singleton pointer values representing null to these expressions.
For each pointee type, a singleton null `PointerValue` is created and stored in the `NullPointerVals` map of the `DataflowAnalysisContext` class. The pointee type is retrieved from the implicit cast expression, and used to initialise the `PointeeLoc` field of the `PointerValue`. The `PointeeLoc` created is not mapped to any `Value`, reflecting the absence of value indicated by null pointers.
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128056
An optional thread_dim_mapping index array attribute specifies for each
virtual thread dimension, how it remaps 1-1 to a set of concrete processing
element resources (e.g. a CUDA grid dimension or a level of concrete nested
async parallelism). At this time, the specification is backend-dependent and
is not verified by the op, beyond being an index array attribute.
It is the reponsibility of the lowering to interpret the index array in the
context of the concrete target the op is lowered to, or to ignore it when
the specification is ill-formed or unsupported for a particular target.
Differential Revision: https://reviews.llvm.org/D128633
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128422
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128581