See http://lists.llvm.org/pipermail/llvm-dev/2020-April/140549.html
For the record, GNU ld changed to 64k max page size in 2014
https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=7572ca8989ead4c3425a1500bc241eaaeffa2c89
"[RFC] ld/ARM: Increase maximum page size to 64kB"
Android driver forced 4k page size in AArch64 (D55029) and ARM (D77746).
A binary linked with max-page-size=4096 does not run on a system with a
higher page size configured. There are some systems out there that do
this and it leads to the binary getting `Killed!` by the kernel.
In the non-linker-script cases, when linked with -z noseparate-code
(default), the max-page-size increase should not cause any size
difference. There may be some VMA usage differences, though.
Reviewed By: psmith, MaskRay
Differential Revision: https://reviews.llvm.org/D77330
The new behavior matches GNU objdump. A pair of angle brackets makes tests slightly easier.
`.foo:` is not unique and thus cannot be used in a `CHECK-LABEL:` directive.
Without `-LABEL`, the CHECK line can match the `Disassembly of section`
line and causes the next `CHECK-NEXT:` to fail.
```
Disassembly of section .foo:
0000000000001634 .foo:
```
Bdragon: <> has metalinguistic connotation. it just "feels right"
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D75713
Port the D64906 technique to ARM. It deletes 3 alignments at
PT_LOAD boundaries for the default case: the size of an arm binary
decreases by at most 12kb.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D66749
llvm-svn: 370049
This improves readability and the behavior is consistent with GNU objdump.
The new test test/tools/llvm-objdump/X86/disassemble-section-name.s
checks we print newlines before and after "Disassembly of section ...:"
Differential Revision: https://reviews.llvm.org/D61127
llvm-svn: 359668
This change adds support for the R_ARM_SBREL32 relocation. The relocation
is a base relative relocation that is produced by clang/llvm when -frwpi
is used. The use case for the -frwpi option is position independent data
for embedded systems that do not have a GOT. With -frwpi all data is
accessed via an offset from a base register (usually r9), where r9 is set
at run time to where the data has been loaded. The base of the data is
known as the static base.
The ARM ABI defines the static base as:
B(S) is the addressing origin of the output segment defining the symbol S.
The origin is not required to be the base address of the segment. For
simplicity we choose to use the base address of the segment.
The ARM procedure call standard only defines a read write variant using
R_ARM_SBREL32 relocations. The read-only data is accessed via pc-relative
offsets from the code, this is implemented in clang as -fropi.
Fixes PR32924
Differential Revision: https://reviews.llvm.org/D33280
llvm-svn: 303337