Zero bit integer types are supported by IntegerType for consistency,
but the asmparser never got updated. Allow them to be parsed, as
required to fix CIRCT issue #316
Differential Revision: https://reviews.llvm.org/D93089
This revision optimizes the parsing of hex strings by using the checked variant of llvm::fromHex, and adding a specialized method to Token for extracting hex strings. This leads a large decrease in compile time when parsing large hex constants (one example: 2.6 seconds -> 370 miliseconds)
Differential Revision: https://reviews.llvm.org/D90266
Summary: At this point Parser has grown to be over 5000 lines and can be very difficult to navigate/update/etc. This commit splits Parser.cpp into several sub files focused on parsing specific types of entities; e.g., Attributes, Types, etc.
Differential Revision: https://reviews.llvm.org/D81299
Summary:
While here, simplify the lexer a bit by eliminating the unneeded 'operator'
classification of certain sigils, they can just be treated as 'punctuation'.
Reviewers: rriddle!
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76647
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
This commit creates a static constexpr limit for the IntegerType
bitwidth and uses it. The check had to be moved because Token is
not aware of IR/Type and it was a sign the abstraction leaked:
bitwidth limit is not a property of the Token but of the IntegerType.
Added a positive and a negative test at the limit.
PiperOrigin-RevId: 210388192
We don't need to C-escape any more, so don't. Also, change the expected escaping syntax to be the slightly noisier version that LLVM emits.
PiperOrigin-RevId: 208989483
print floating point in a structured form that we know can round trip,
enumerate attributes in the visitor so we print affine mapping attributes
symbolically (the majority of the testcase updates).
We still have an issue where the hexadecimal floating point syntax is reparsed
as an integer, but that can evolve in subsequent patches.
PiperOrigin-RevId: 208828876
This patch passes the raw, unescaped value through to the rest of the stack. Partial escaping is a total pain to deal with, so we either need to implement escaping properly (ideally using a third party library like absl, I don't think LLVM has one that can handle the proper gamut of escape codes) or don't escape. I chose the latter for this patch.
PiperOrigin-RevId: 208608945
This is doing it in a suboptimal manner by recombining [integer period literal] into a string literal and parsing that via to_float.
PiperOrigin-RevId: 206855106
important for low-bitwidth inference cases and hardware synthesis targets.
Rename 'int' to 'affineint' to avoid confusion between "the integers" and "the int
type".
PiperOrigin-RevId: 202751508
Run test case:
$ mlir-opt test/IR/parser-affine-map.mlir
test/IR/parser-affine-map.mlir:3:30: error: expect '(' at start of map range
#hello_world2 (i, j) [s0] -> i+s0, j)
^
PiperOrigin-RevId: 202736856
to share code a bit more, and fixes a diagnostic bug Uday pointed out where
parseCommaSeparatedList would print the wrong diagnostic when the end signifier
was not a ).
PiperOrigin-RevId: 202676858
class.
Introduce an Identifier class to MLIRContext to represent uniqued identifiers,
introduce string literal support to the lexer, introducing parser and printer
support etc.
PiperOrigin-RevId: 202592007
Semi-affine maps and address spaces are not yet supported (someone want to take
this on?). We also don't generate IR objects for types yet, which I plan to
tackle next.
PiperOrigin-RevId: 201754283