Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Because it was a callee-saved register, we automatically generated code
to spill and unspill its original value so that it is restored after the
function returns.
The problem is that this code was being generated before the epilogue.
The epilogue itself uses the Y register, which could be prematurely
restored by the CSR restoration process.
This removes R29R28 from the CSR list and changes the prologue/epilogue
code to handle it explicitly.
llvm-svn: 301887
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
r298178 capitalized the fields in `ArgListEntry`. All the official
targets were updated accordingly, but as an experimental target AVR
was missed.
llvm-svn: 298677
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
It is sufficient to skip emission of these arguments as we have nothing
to actually pass through the function call.
The AVR-GCC reference has nothing to say about zero-sized arguments,
presumably because C/C++ doesn't support them. This means we don't have
to worry about ABI differences.
llvm-svn: 294119
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
Summary:
This pass will be used to relax instructions which use out of bounds
memory accesses to equivalent operations that can work with the
addresses.
The pass currently implements relaxation for the STDWPtrQRr instruction.
Without this pass, an assertion error would be hit in the pseudo expansion pass.
In the future, we will need to add more instructions to this pass. We can do
that on a case-by-case basic.
Reviewers: arsenm, kparzysz
Subscribers: wdng, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27650
llvm-svn: 289517
There was a bug where we would hit an assertion if 'Q' was used as a
constraint.
I also removed hardcoded register names to prefer regexes so the tests
don't break when the register allocator changes.
llvm-svn: 289325
Summary: This gets rid of the hardcoded 'r0' that was used previously.
Reviewers: asl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27567
llvm-svn: 289322
These should've been checking whether the immediate is a 6-bit unsigned
integer.
If the immediate was '63', this would cause an assertion error which
shouldn't have occurred.
llvm-svn: 289315