This is the counterpart to G_AMDGPU_FFBH_U32 which already exists. These
instructions have a defined result of -1 when the input is zero.
Differential Revision: https://reviews.llvm.org/D107441
Add signed and unsigned integer version of med3 combine.
Source pattern is min(max(Val, K0), K1) or max(min(Val, K1), K0)
where K0 and K1 are constants and K0 <= K1. Destination is med3
that corresponds to signedness of min/max in source.
Differential Revision: https://reviews.llvm.org/D90050
Use SIInstrFlags to differentiate between the different
variants of flat instructions (flat, global and scratch).
This should make it easier to bundle the immediate offset logic in a
single place and implement restrictions and bug workarounds.
Fixed version of D99587, which does not rely on the address space.
Differential Revision: https://reviews.llvm.org/D99743
Replace individual operands GLC, SLC, and DLC with a single cache_policy
bitmask operand. This will reduce the number of operands in MIR and I hope
the amount of code. These operands are mostly 0 anyway.
Additional advantage that parser will accept these flags in any order unlike
now.
Differential Revision: https://reviews.llvm.org/D96469
Allow different GICustomOperandRenderers to use the same RendererFn.
This avoids the need for targets to define a bunch of identical C++
renderer functions with different names.
Without this fix TableGen would have emitted code that tried to define
the GICR enumeration with duplicate enumerators.
Differential Revision: https://reviews.llvm.org/D96587
When running the tests on PowerPC and x86, the lit test GlobalISel/trunc.ll fails at the memory sanitize step. This seems to be due to wrong invalid logic (which matches even if it shouldn't) and likely missing variable initialisation."
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D95878
This reverts commits 62af0305b7cc..677a3529d3e6 from D93708.
They cause failures in the sanitizer builds because of uninitialized
values.
A fix is in D95878, but it might take some time until this is pushed,
so reverting the changes for now.
It does not seem to fold offsets but this is not specific
to the flat scratch as getPtrBaseWithConstantOffset() does
not return the split for these tests unlike its SDag
counterpart.
Differential Revision: https://reviews.llvm.org/D93670
Fix local ds_read/write_b96/b128 so they can be selected if the alignment
allows. Otherwise, either pick appropriate ds_read2/write2 instructions or break
them down.
Differential Revision: https://reviews.llvm.org/D81638
ISD::ATOMIC_STORE arbitrarily has the operands in the opposite order
from regular ISD::STORE, which always introduced an annoying
duplication of patterns to handle both cases. Since in GlobalISel
there's just the one G_STORE, we need to swap the operands to
correctly emit the type check for the pointer operand.
Some work started in 20aafa3156 to
migrate SelectionDAG to use ISD::STORE for atomics, but that work
seems to have stalled. Since this is the pretty much the last
operation which matters which isn't supported for AMDGPU, use this
compatibility hack to unblock declaring it functionally complete.
Not sure what's going on with the pending_phis AArch64 test. It seems
it didn't always use atomics, and I'm not sure what it was originally
testing matters anymore.
The division expansions in AMDGPUCodeGenPrepare can't be relied on for
correctness, since they punt to later optimization and possibly
legalization in some cases. We still need a way to be able to write
tests for the legalizer versions of the expansion. This is mostly for
GlobalISel, since the expected optimzations is expecting aren't
implemented.
The interaction with the flag to expand 64-bit division in the IR is
pretty confusing, but these flags have different purposes.
Try out using combine definition rules.
This really should be a post-legalizer combine, but the combiner pass
is currently pre-legalize. Most of the target combines are really
post-legalize, so we should probably move the pass.
Use intermediate instructions, unlike with buffer stores. This is
necessary because of the need to have an internal way to distinguish
between signed and unsigned extloads. This introduces some duplication
and near duplication with the buffer store selection path. The store
handling should maybe be moved into legalization to match and
eliminate the duplication.
The current implementation assumes there is an instruction associated
with the transform, but this is not the case for
timm/TargetConstant/immarg values. These transforms should directly
operate on a specific MachineOperand in the source
instruction. TableGen would assert if you attempted to define an
equivalent GISDNodeXFormEquiv using timm when it failed to find the
instruction matcher.
Specially recognize SDNodeXForms on timm, and pass the operand index
to the render function.
Ideally this would be a separate render function type that looks like
void renderFoo(MachineInstrBuilder, const MachineOperand&), but this
proved to be somewhat mechanically painful. Add an optional operand
index which will only be passed if the transform should only look at
the one source operand.
Theoretically it would also be possible to only ever pass the
MachineOperand, and the existing renderers would check the parent. I
think that would be somewhat ugly for the standard usage which may
want to inspect other operands, and I also think MachineOperand should
eventually not carry a pointer to the parent instruction.
Use it in one sample pattern. This isn't a great example, since the
transform exists to satisfy DAG type constraints. This could also be
avoided by just changing the MachineInstr's arbitrary choice of
operand type from i16 to i32. Other patterns have nontrivial uses, but
this serves as the simplest example.
One flaw this still has is if you try to use an SDNodeXForm defined
for imm, but the source pattern uses timm, you still see the "Failed
to lookup instruction" assert. However, there is now a way to avoid
it.
This doesn't enable any new imports yet, but moves the fmed patterns
from failing on this to hitting the "complex suboperand referenced
more than once" limitation in tablegen.