The functionality contained within getIntrinsicIDForCall is two-fold: it
checks if a CallInst's callee is a vectorizable intrinsic. If it isn't
an intrinsic, it attempts to map the call's target to a suitable
intrinsic.
Move the mapping functionality into getIntrinsicForCallSite and rename
getIntrinsicIDForCall to getVectorIntrinsicIDForCall while
reimplementing it in terms of getIntrinsicForCallSite.
llvm-svn: 266801
Remove an ad-hoc transform in InstCombine and replace it with more
general machinery (ValueTracking, InstructionSimplify and VectorUtils).
This fixes PR27332.
llvm-svn: 266175
To quote the langref "Unlike sqrt in libm, however, llvm.sqrt has
undefined behavior for negative numbers other than -0.0 (which allows
for better optimization, because there is no need to worry about errno
being set). llvm.sqrt(-0.0) is defined to return -0.0 like IEEE sqrt."
This means that it's unsafe to replace sqrt with llvm.sqrt unless the
call is annotated with nnan.
Thanks to Hal Finkel for pointing this out!
llvm-svn: 265521
We already try not to truncate PHIs in computeMinimalBitwidths. LoopVectorize can't handle it and we really don't need to, because both induction and reduction PHIs are truncated by other means.
However, we weren't bailing out in all the places we should have, and we ended up by returning a PHI to be truncated, which has caused PR27018.
This fixes PR17018.
llvm-svn: 264852
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.
GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16275
llvm-svn: 258145
Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
The order in which instructions are truncated in truncateToMinimalBitwidths
effects code generation. Switch to a map with a determinisic order, since the
iteration order over a DenseMap is not defined.
This code is not hot, so the difference in container performance isn't
interesting.
Many thanks to David Blaikie for making me aware of MapVector!
Fixes PR25490.
Differential Revision: http://reviews.llvm.org/D14981
llvm-svn: 254179
Implemented as many of Michael's suggestions as were possible:
* clang-format the added code while it is still fresh.
* tried to change Value* to Instruction* in many places in computeMinimumValueSizes - unfortunately there are several places where Constants need to be handled so this wasn't possible.
* Reduce the pass list on loop-vectorization-factors.ll.
* Fix a bug where we were querying MinBWs for I->getOperand(0) but using MinBWs[I].
llvm-svn: 252469
C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
type (e.g. i32) whenever arithmetic is performed on them.
For targets with native i8 or i16 operations, usually InstCombine can shrink
the arithmetic type down again. However InstCombine refuses to create illegal
types, so for targets without i8 or i16 registers, the lengthening and
shrinking remains.
Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
their scalar equivalents do not, so during vectorization it is important to
remove these lengthens and truncates when deciding the profitability of
vectorization.
The algorithm this uses starts at truncs and icmps, trawling their use-def
chains until they terminate or instructions outside the loop are found (or
unsafe instructions like inttoptr casts are found). If the use-def chains
starting from different root instructions (truncs/icmps) meet, they are
unioned. The demanded bits of each node in the graph are ORed together to form
an overall mask of the demanded bits in the entire graph. The minimum bitwidth
that graph can be truncated to is the bitwidth minus the number of leading
zeroes in the overall mask.
The intention is that this algorithm should "first do no harm", so it will
never insert extra cast instructions. This is why the use-def graphs are
unioned, so that subgraphs with different minimum bitwidths do not need casts
inserted between them.
This algorithm works hard to reduce compile time impact. DemandedBits are only
queried if there are extends of illegal types and if a truncate to an illegal
type is seen. In the general case, this results in a simple linear scan of the
instructions in the loop.
No non-noise compile time impact was seen on a clang bootstrap build.
llvm-svn: 250032
This reverts commit r246371, as it cause a rather obscure bug in AArch64
test-suite paq8p (time outs, seg-faults). I'll investigate it before
reapplying.
llvm-svn: 246379
Value *getSplatValue(Value *Val);
It complements the CreateVectorSplat(), which creates 2 instructions - insertelement and shuffle with all-zero mask.
The new function recognizes the pattern - insertelement+shuffle and returns the splat value (or nullptr).
It also returns a splat value form ConstantDataVector, for completeness.
Differential Revision: http://reviews.llvm.org/D11124
llvm-svn: 246371
The following functions are moved from the LoopVectorizer to VectorUtils:
- getGEPInductionOperand
- stripGetElementPtr
- getUniqueCastUse
- getStrideFromPointer
These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.
Patch by Ashutosh Nema!
llvm-svn: 241980