This change implements support for R_ARM_THM_JUMP8 relocation in
addition to R_ARM_THM_JUMP11 which is already supported by LLD.
Differential Revision: https://reviews.llvm.org/D21225
(As I mentioned in https://reviews.llvm.org/D62609#1534158 ,
the condition for using bti c for executable can be loosened.)
In two cases the address of a PLT may escape:
* canonical PLT entry for a STT_FUNC
* non-preemptible STT_GNU_IFUNC which is converted to STT_FUNC
The first case can be detected with `needsPltAddr`.
The second case is not straightforward to detect because for the Relocations.cpp
created `directSym`, it's difficult to know whether the associated `sym` has
exercised the `!needsPlt(expr)` code path. Just use the conservative `isInIplt`
condition. A non-preemptible ifunc not referenced by non-GOT-generating
non-PLT-generating relocations will have an unneeded `bti c`, but the cost is acceptable.
The second case fixes a bug as well: a -shared link may have non-preemptible ifunc.
Before the patch we did not emit `bti c` and could be wrong if the PLT address escaped.
GNU ld doesn't handle the case: `relocation R_AARCH64_ADR_PREL_PG_HI21 against STT_GNU_IFUNC symbol 'ifunc2' isn't handled by elf64_aarch64_final_link_relocate` (https://sourceware.org/bugzilla/show_bug.cgi?id=28370)
For -shared, if BTI is enabled but PAC is disabled, the PLT entry size increases
from 16 to 24 because we have to select the PLT scheme early, but the cost is
acceptable.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D110217
Copy relocation on a non-default version symbol is unsupported and can crash at
runtime. Fortunately there is a one-line fix which works for most cases:
ensure `getSymbolsAt` unconditionally returns `ss`.
If two non-default version symbols are defined at the same place and both
are copy relocated, our implementation will copy relocated them into different
addresses. The pointer inequality is very unlikely an issue. In GNU ld, copy
relocating version aliases seems to create more pointer inequality problems than
us.
(
In glibc, sys_errlist@GLIBC_2.2.5 sys_errlist@GLIBC_2.3 sys_errlist@GLIBC_2.4
are defined at the same place, but it is unlikely they are all copy relocated in
one executable. Even if so, the variables are read-only and pointer inequality
should not be a problem.
)
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107535
After D77330, the comments are inconsistent with the disassembled code.
As the value of `far` has been changed, a thunk to reach it is now
generated, and target addresses of branch instructions are different
from what was initially expected.
The patch fixes that and makes the test closer to what it was originally.
Differential Revision: https://reviews.llvm.org/D104286
If we support local signature symbols (PR43094), these tests would fail.
When the support is added, new tests (local signature symbol specific) should be developed.
Fix PR49897: if `__real_foo` has the isUsedInRegularObj bit set, we need to
retain `foo` in .symtab, even if `foo` is undefined. The new behavior will match
GNU ld.
Before the patch, we produced an R_X86_64_JUMP_SLOT relocation referencing the
index 0 undefined symbol, which would be erroed by glibc
(see f96ff3c0f8).
While here, fix another bug: if `__wrap_foo` does not exist, its initial binding
should be `foo`'s.
For x86-64, D33100 added a diagnostic for local-exec TLS relocations referencing a preemptible symbol.
This patch generalizes it to non-preemptible symbols (see `-Bsymbolic` in `tls.s`)
on all targets.
Local-exec TLS relocations resolve to offsets relative to a fixed point within
the static TLS block, which are only meaningful for the executable.
With this change, `clang -fpic -shared -fuse-ld=bfd a.c` on the following example will be flagged for AArch64/ARM/i386/x86-64/RISC-V
```
static __attribute__((tls_model("local-exec"))) __thread long TlsVar = 42;
long bump() { return ++TlsVar; }
```
Note, in GNU ld, at least arm, riscv and x86's ports have the similar
diagnostics, but aarch64 and ppc64 do not error.
Differential Revision: https://reviews.llvm.org/D93331
The original tests have unneeded symbols and copy-relocation-zero-abs-addr.s
does not actually test anything.
Rewrite them and add copy-relocation-zero-addr.s instead.
Add --soname=b so that the address 0x203400 will be stable. (When linking an
executable with %t.so, the path %t.so will be recorded in the DT_NEEDED entry if
%t.so doesn't have DT_SONAME. .dynstr will have varying lengths on different
systems.)
This patch implements the handling for the R_PPC64_PCREL_OPT relocation as well
as the GOT relocation for the associated R_PPC64_GOT_PCREL34 relocation.
On Power10 targets with PC-Relative addressing, the linker can relax
GOT-relative accesses to PC-Relative under some conditions. Since the sequence
consists of a prefixed load, followed by a non-prefixed access (load or store),
the linker needs to replace the first instruction (as the replacement
instruction will be prefixed). The compiler communicates to the linker that
this optimization is safe by placing the two aforementioned relocations on the
GOT load (of the address).
The linker then does two things:
- Convert the load from the got into a PC-Relative add to compute the address
relative to the PC
- Find the instruction referred to by the second relocation (R_PPC64_PCREL_OPT)
and replace the first with the PC-Relative version of it
It is important to synchronize the mapping from legacy memory instructions to
their PC-Relative form. Hence, this patch adds a file to be included by both
the compiler and the linker so they're always in agreement.
Differential revision: https://reviews.llvm.org/D84360
It turns that gnu-ifunc-plt-i386.s and gnu-ifunc-plt.s tests are broken.
Initially they were implemented in D27581 and tested that `IRELATIVE` relocations
are placed after other relocations in `.rel.plt`.
Later, we started to place `IRELATIVE` relocations to `.rela.dyn` (D65651).
Also, at some point `.plt` was renamed to `.iplt` (D71520).
Now, `gnu-ifunc*` tests mentioned do not test what they intended to test initially:
they should test that `IRELATIVE` relocations are placed after other ones in
`.rela.dyn`. Also, comments needs to be updated accordingly after changes performed.
This patch updates them.
Differential revision: https://reviews.llvm.org/D85642
The PC Relative code allows for calls that are marked with the relocation
R_PPC64_REL24_NOTOC. This indicates that the caller does not have a valid TOC
pointer in R2 and does not require R2 to be restored after the call.
This patch is added to support local calls to callees tha also do not have a TOC.
Reviewed By: sfertile, MaskRay, stefanp
Differential Revision: https://reviews.llvm.org/D82816
The patch adds checking for various potential issues in parsing name
lookup tables and reporting them as recoverable errors, similarly as we
do for other tables.
Differential Revision: https://reviews.llvm.org/D83050
If there is no SHF_TLS section, there will be no PT_TLS and Out::tlsPhdr may be a nullptr.
If the symbol referenced by an R_TLS is lazy, we should treat the symbol as undefined.
Also reorganize tls-in-archive.s and tls-weak-undef.s . They do not test what they intended to test.
See http://lists.llvm.org/pipermail/llvm-dev/2020-April/140549.html
For the record, GNU ld changed to 64k max page size in 2014
https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=7572ca8989ead4c3425a1500bc241eaaeffa2c89
"[RFC] ld/ARM: Increase maximum page size to 64kB"
Android driver forced 4k page size in AArch64 (D55029) and ARM (D77746).
A binary linked with max-page-size=4096 does not run on a system with a
higher page size configured. There are some systems out there that do
this and it leads to the binary getting `Killed!` by the kernel.
In the non-linker-script cases, when linked with -z noseparate-code
(default), the max-page-size increase should not cause any size
difference. There may be some VMA usage differences, though.
Reviewed By: psmith, MaskRay
Differential Revision: https://reviews.llvm.org/D77330
The test had a few style issues, and I noticed a hole in the coverage
(namely that the search order wasn't tested). Adding cases for the hole
in turn meant other cases weren't important.
The .so test case isn't important, since the code is shared code, so
I've removed it. Additionally, I've modified the usage of the "bar"
directive to show that an unneeded library must still be present, or the
link will fail, even though it isn't linked in.
Reviewed by: MaskRay, grimar
Differential Revision: https://reviews.llvm.org/D76851
Currently `yaml2obj` require `Offset` field in a relocation description.
There are many cases when `Offset` is insignificant in a context of a test case.
Making `Offset` optional allows to simplify our test cases.
This is what this patch does.
Also, with this patch `obj2yaml` does not dump a zero offset of a relocation.
Differential revision: https://reviews.llvm.org/D75608
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "assume
stated length is correct" is taken which means the offset might need
adjusting.
This is a relanding of b94191fe, fixing an LLD test and the LLDB build.
Reviewed by: dblaikie, labath
Differential Revision: https://reviews.llvm.org/D72158
LLD warns if it encounters malformed debug data when parsing line
information for an undefined reference. We only want to warn once.
This patch adds additional checking to make sure the warnings are
printed only once, both for variables within the same program and
variables in later line programs.
Reviewed by: grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D71759
Our .interp section is not a SyntheticSection. As a result, it terminates the
loop in removeUnusedSyntheticSections(). This has at least two consequences:
- The synthetic .bss and .bss.rel.ro sections are always present in
dynamically linked executables, even when they are not needed.
- The synthetic .ARM.exidx (and possibly other) sections are always present
in partitions other than the last one, even when not needed.
.ARM.exidx in particular is problematic because it assumes that its
list of code sections is non-empty in getLinkOrderDep(), which can
lead to a crash if the partition does not have any code sections.
Fix these problems by moving the creation of the .interp sections to the
top of createSyntheticSections(). While here, make the code a little less
error-prone by changing the add() lambdas to take a SyntheticSection instead
of an InputSectionBase.
Differential Revision: https://reviews.llvm.org/D68256
llvm-svn: 373347
Add file-level comments
Replace trivial Input/*.s with echo ... | llvm-mc
Delete insignificant addresses to make them more tolerant to layout changes
Simplify test output
Merge merge-section-types.s into compatible-section-types.s and add a missed case
Merge gnu-ifunc-gotpcrel.s (added in D19517) into gnu-ifunc-dso.s (added in D35119) and add missed cases
Delete typed-undef.s - covered by executable-undefined-ignoreall.s
Delete emit-relocs-shared.s - covered by emit-relocs-merge.s
Replace copy-rel-pie.s and copy-rel-pie2.s with canonical-plt-pcrel.s, canonical-plt-symbolic.s and copy-rel.s:
add -no-pie cases.
add a case that a canonical PLT can be created for STT_GNU_IFUNC. The logic in Symbols.h was untested:
// ctor of SharedSymbol
if (this->type == llvm::ELF::STT_GNU_IFUNC)
this->type = llvm::ELF::STT_FUNC;
llvm-svn: 371361
Add file-level comments
Delete insignificant addresses to make them more tolerant to layout changes
Simplify test output
Delete weak-undef-val.s - covered by relocation-undefined-weak.s
Delete weak-undef-export.s - covered by additional test added to weak-undef.s
Delete version-undef-sym.s - covered by undefined-versioned-symbol.s => version-symbol-undef.s
Delete symbol-ordering-file2.s - covered by symbol-ordering-file.s
Delete gotpcrelx.s - covered by gotpc-relax-und-dso.s => x86-64-gotpc-relax-und-dso.s
llvm-svn: 371299
Add file-level comments
Delete insignificant addresses to make them more tolerant to layout changes
Simplify test output
Delete simple Inputs/*.s files
Delete version-script-copy-rel.s - covered by verdef-defaultver.s
Delete version-wildcard.test - covered by version-script-glob.s
llvm-svn: 371213
This removes the precompiled binary and improves the
check of the error reported.
Differential revision: https://reviews.llvm.org/D66523
llvm-svn: 369516
The filename part in the message header is used by Visual Studio
to fill Error List so that a user can click on an item and jump
to the mentioned location. If we use only the name of a source file
and not the full path, Visual Studio might be unable to find the right
file or, even worse, show a wrong one.
Differential Revision: https://reviews.llvm.org/D65875
llvm-svn: 368409
Avoid splitting the test into multiple files and use zero for the value of
the symbol with addends at relocations so that it's clear what value is
being used at relocations.
Differential Revision: https://reviews.llvm.org/D64684
llvm-svn: 366463
Summary:
Add a --vs-diagnostics flag that alters the format of diagnostic output
to enable source hyperlinks in Visual Studio.
Differential Revision: https://reviews.llvm.org/D58484
Reviewed by: ruiu
llvm-svn: 366333
This restores r361830 "[ELF] Error on relocations to STT_SECTION symbols if the sections were discarded"
and dependent commits (r362218, r362497) which were reverted by r364321, with a fix of a --gdb-index issue.
.rela.debug_ranges contains relocations of range list entries:
// start address of a range list entry
// old: 0; after r361830: 0
00000000000033a0 R_X86_64_64 .text._ZN2v88internal7Isolate7factoryEv + 0
// end address of a range list entry
// old: 0xe; after r361830: 0
00000000000033a8 R_X86_64_64 .text._ZN2v88internal7Isolate7factoryEv + e
If both start and end addresses of a range list entry resolve to 0,
DWARFDebugRangeList::isEndOfListEntry() will return true, then the
.debug_range decoding loop will terminate prematurely:
while (true) {
decode StartAddress
decode EndAddress
if (Entry.isEndOfListEntry()) // prematurely
break;
Entries.push_back(Entry);
}
In lld/ELF/SyntheticSections.cpp, readAddressAreas() will read
incomplete address ranges and the resulting .gdb_index will be
incomplete. For files that gdb hasn't loaded their debug info, gdb uses
.gdb_index to map addresses to CUs. The absent entries make gdb fail to
symbolize some addresses.
To address this issue, we simply allow relocations to undefined symbols
in DWARF.cpp:findAux() and let RelocationResolver resolve them.
This patch should fix:
[1] http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190603/659848.html
[2] https://bugs.chromium.org/p/chromium/issues/detail?id=978067
llvm-svn: 364391
(In effect, reverting "[ELF] Error on relocations to STT_SECTION symbols if the sections were discarded".)
It caused debug info problems in LibreOffice [1] and Chromium/V8 [2].
Reverting until those can be fixed.
It also reverts r362497 "STT_SECTION symbol should be defined" on .eh_frame, .debug*, .zdebug* and .gcc_except_table"
which was landed as a follow-up to the above.
> With -r or --emit-relocs, we warn `STT_SECTION symbol should be defined`
> on relocations to discarded section symbol. This was added as an error
> in rLLD319404, but was not so effective before D61583 (it turned the
> error to a warning).
>
> Relocations from .eh_frame .debug* .zdebug* .gcc_except_table to
> discarded .text are very common and somewhat expected. Don't warn/error
> on them. As a reference, ld.bfd has a similar logic in
> _bfd_elf_default_action_discarded() to allow these cases.
>
> Delete invalid-undef-section-symbol.test because what it intended to
> check is now covered by the updated comdat-discarded-reloc.s
>
> Delete relocatable-eh-frame.s because we allow relocations from
> .eh_frame as a special case now.
And finally it reverts r362218 "[ELF] Replace a dead test in getSymVA() with assert()"
as that also depended on the main change reverted here.
> Symbols relative to discarded comdat sections are Undefined instead of
> Defined now (after D59649 and D61583). The `== &InputSection::Discarded`
> test becomes dead. I cannot find a test related to this behavior.
[1] http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190603/659848.html
[2] https://bugs.chromium.org/p/chromium/issues/detail?id=978067
llvm-svn: 364321
Similar to R_AARCH64_ABS32, R_PPC64_ADDR32 can represent either a signed
value or unsigned value, thus we should use `[-2**(n-1), 2**n)` instead of
`[-2**(n-1), 2**(n-1))` to check overflows.
The issue manifests as a bogus linker error when linking the powerpc64le Linux kernel.
The new behavior is compatible with ld.bfd's complain_overflow_bitfield.
The upper bound of the error message is not correct. Fix it as well.
The changes to R_PPC_ADDR16, R_PPC64_ADDR16, R_X86_64_8 and R_X86_64_16 are similar.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63690
llvm-svn: 364164
Branch Target Identification (BTI) and Pointer Authentication (PAC) are
architecture features introduced in v8.5a and 8.3a respectively. The new
instructions have been added in the hint space so that binaries take
advantage of support where it exists yet still run on older hardware. The
impact of each feature is:
BTI: For executable pages that have been guarded, all indirect branches
must have a destination that is a BTI instruction of the appropriate type.
For the static linker, this means that PLT entries must have a "BTI c" as
the first instruction in the sequence. BTI is an all or nothing
property for a link unit, any indirect branch not landing on a valid
destination will cause a Branch Target Exception.
PAC: The dynamic loader encodes with PACIA the address of the destination
that the PLT entry will load from the .plt.got, placing the result in a
subset of the top-bits that are not valid virtual addresses. The PLT entry
may authenticate these top-bits using the AUTIA instruction before
branching to the destination. Use of PAC in PLT sequences is a contract
between the dynamic loader and the static linker, it is independent of
whether the relocatable objects use PAC.
BTI and PAC are independent features that can be combined. So we can have
several combinations of PLT:
- Standard with no BTI or PAC
- BTI PLT with "BTI c" as first instruction.
- PAC PLT with "AUTIA1716" before the indirect branch to X17.
- BTIPAC PLT with "BTI c" as first instruction and "AUTIA1716" before the
first indirect branch to X17.
The use of BTI and PAC in relocatable object files are encoded by feature
bits in the .note.gnu.property section in a similar way to Intel CET. There
is one AArch64 specific program property GNU_PROPERTY_AARCH64_FEATURE_1_AND
and two target feature bits defined:
- GNU_PROPERTY_AARCH64_FEATURE_1_BTI
-- All executable sections are compatible with BTI.
- GNU_PROPERTY_AARCH64_FEATURE_1_PAC
-- All executable sections have return address signing enabled.
Due to the properties of FEATURE_1_AND the static linker can tell when all
input relocatable objects have the BTI and PAC feature bits set. The static
linker uses this to enable the appropriate PLT sequence.
Neither -> standard PLT
GNU_PROPERTY_AARCH64_FEATURE_1_BTI -> BTI PLT
GNU_PROPERTY_AARCH64_FEATURE_1_PAC -> PAC PLT
Both properties -> BTIPAC PLT
In addition to the .note.gnu.properties there are two new command line
options:
--force-bti : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_BTI and warn for every relocatable object
that does not.
--pac-plt : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_PAC. As PAC is a contract between the loader
and static linker no warning is given if it is not present in an input.
Two processor specific dynamic tags are used to communicate that a non
standard PLT sequence is being used.
DTI_AARCH64_BTI_PLT and DTI_AARCH64_BTI_PAC.
Differential Revision: https://reviews.llvm.org/D62609
llvm-svn: 362793
Summary:
With -r or --emit-relocs, we warn `STT_SECTION symbol should be defined`
on relocations to discarded section symbol. This was added as an error
in rLLD319404, but was not so effective before D61583 (it turned the
error to a warning).
Relocations from .eh_frame .debug* .zdebug* .gcc_except_table to
discarded .text are very common and somewhat expected. Don't warn/error
on them. As a reference, ld.bfd has a similar logic in
_bfd_elf_default_action_discarded() to allow these cases.
Delete invalid-undef-section-symbol.test because what it intended to
check is now covered by the updated comdat-discarded-reloc.s
Delete relocatable-eh-frame.s because we allow relocations from
.eh_frame as a special case now.
Reviewers: grimar, phosek, ruiu, espindola
Reviewed By: ruiu
Subscribers: emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62840
llvm-svn: 362497
Change R_{386,AARCH64}_NONE yaml2obj tests/icf10.test to use assembly
Add relocation-none-{arm,x86_64}.s.
Check the referenced section survives under --gc-sections.
Check -r copies R_X86_64_NONE R_AARCH64_NONE. (Elf*_Rel arches currently have a bug)
Delete the dtrace tests as they are covered by the R_X86_64_NONE test.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62051
llvm-svn: 361013
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
This is based on D54720 by Sean Fertile.
When accessing a global symbol which is not defined in the translation unit,
compilers will generate instructions that load the address from the toc entry.
If the symbol is defined, non-preemptable, and addressable with a 32-bit
signed offset from the toc pointer, the address can be computed
directly. e.g.
addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
ld/lwa 3, 0(3) # load the value from the address
.section .toc,"aw",@progbits
.LC0: .tc var[TC],var
can be relaxed to
addis 3,2,var@toc@ha # this may be relaxed to a nop,
addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
ld/lwa 3, 0(3) # load the value from the address
We can delete the test ppc64-got-indirect.s as its purpose is covered by
newly added ppc64-toc-relax.s and ppc64-toc-relax-constants.s
Reviewed By: ruiu, sfertile
Differential Revision: https://reviews.llvm.org/D60958
llvm-svn: 360112