Add a type (ObjCObjectPointerType) and remove a type (ObjCQualifiedIdType).
This large/tedious patch is just a first step. Next step is to remove ObjCQualifiedInterfaceType. After that, I will remove the magic TypedefType for 'id' (installed by Sema). This work will enable various simplifications throughout clang (when dealing with ObjC types).
No functionality change.
llvm-svn: 73649
that were suppressed due to SFINAE. By checking whether any errors
occur at the end of template argument deduction, we avoid the
possibility of suppressing an error (due to SFINAE) and then
recovering so well that template argument deduction never detects that
there was a problem. Thanks to Eli for the push in this direction.
llvm-svn: 73336
Implement support for C++ Substitution Failure Is Not An Error
(SFINAE), which says that errors that occur during template argument
deduction do *not* produce diagnostics and do not necessarily make a
program ill-formed. Instead, template argument deduction silently
fails. This is currently implemented for template argument deduction
during matching of class template partial specializations, although
the mechanism will also apply to template argument deduction for
function templates. The scheme is simple:
- If we are in a template argument deduction context, any diagnostic
that is considered a SFINAE error (or warning) will be
suppressed. The error will be propagated up the call stack via the
normal means.
- By default, all warnings and errors are SFINAE errors. Add the
NoSFINAE class to a diagnostic in the .td file to make it a hard
error (e.g., for access-control violations).
Note that, to make this fully work, every place in Sema that emits an
error *and then immediately recovers* will need to check
Sema::isSFINAEContext() to determine whether it must immediately
return an error rather than recovering.
llvm-svn: 73332
preprocessor and initialize it early in clang-cc. This
ensures that __has_builtin works in all modes, not just
when ASTContext is around.
llvm-svn: 73319
I'm not completely sure this is the right way to fix this issue, but it seems
reasonable, and it's consistent with the non-template code for this
construct.
llvm-svn: 73285
specialization's arguments are identical to the implicit template
arguments of the primary template. Typically, this is meant to be a
declaration/definition of the primary template, so we give that
advice.
llvm-svn: 73259
argument deduction failed. For example, given
template<typename T> struct is_same<T, T> { ... };
template argument deduction will fail for is_same<int, float>, and now
reports enough information
Right now, we don't do anything with this extra information, but it
can be used for informative diagnostics that say, e.g., "template
argument deduction failed because T was deduced to 'int' in one
context and 'float' in another".
llvm-svn: 73237
partial specialization, substitute those template arguments back into
the template arguments of the class template partial specialization to
see if the results still match the original template arguments.
This code is more general than it needs to be, since we don't yet
diagnose C++ [temp.class.spec]p9. However, it's likely to be needed
for function templates.
llvm-svn: 73196
(Actually, this isn't precisely correct, but it doesn't make
sense to query whether an expression that isn't an ICE is
value-dependent anyway.)
llvm-svn: 73179
visible anywhere normally because the printf format checks for
this case, and we don't print out attribute values anywhere. Original
patch by Roberto Bagnara.
llvm-svn: 73157
specialization types. As the example shows, we can now compute the
length of a type-list using a template metaprogram and class template
partial specialization.
llvm-svn: 73136
hack which introduces some strange inconsistencies in compatibility
for block pointers.
Note that unlike an earlier revision proposed on cfe-commits, this patch
still allows declaring block pointers without a prototype.
llvm-svn: 73041
- Once we have deduced template arguments for a class template partial
specialization, we use exactly those template arguments for instantiating
the definition of the class template partial specialization.
- Added template argument deduction for non-type template parameters.
- Added template argument deduction for dependently-sized array types.
With these changes, we can now implement, e.g., the remove_reference
type trait. Also, Daniel's Ackermann template metaprogram now compiles
properly.
llvm-svn: 72909
deductions of the same template parameter are equivalent. This allows
us to implement the is_same type trait (!).
Also, move template argument deduction into its own file and update a
few build systems with this change (grrrr).
llvm-svn: 72819
definition variadic. I'm not completely sure it's legal, but the
standard can be interpreted as making it legal, and gcc seems to think
it's legal, so I didn't add an extension warning.
llvm-svn: 72689
an error to being a warning that defaults to error. If you want this to
be a warning, you have to explicitly pass -Winvalid-noreturn to clang to
map it back to a warning.
llvm-svn: 72669
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662
walks through DeclContexts properly, and prints more of the
information available in the AST. The functionality is still available
via -ast-print, -ast-dump, etc., and also via the new member functions
Decl::dump() and Decl::print().
llvm-svn: 72597
printing logic to help customize the output. For now, we use this
rather than a special flag to suppress the "struct" when printing
"struct X" and to print the Boolean type as "bool" in C++ but "_Bool"
in C.
llvm-svn: 72590
instantiation of tags local to member functions of class templates
(and, eventually, function templates) works when the tag is defined as
part of the decl-specifier-seq, e.g.,
struct S { T x, y; } s1;
Also, make sure that we don't try to default-initialize a dependent
type.
llvm-svn: 72568
specifier resulted in the creation of a new TagDecl node, which
happens either when the tag specifier was a definition or when the tag
specifier was the first declaration of that tag type. This information
has several uses, the first of which is implemented in this commit:
1) In C++, one is not allowed to define tag types within a type
specifier (e.g., static_cast<struct S { int x; } *>(0) is
ill-formed) or within the result or parameter types of a
function. We now diagnose this.
2) We can extend DeclGroups to contain information about any tags
that are declared/defined within the declaration specifiers of a
variable, e.g.,
struct Point { int x, y, z; } p;
This will help improve AST printing and template instantiation,
among other things.
3) For C99, we can keep track of whether a tag type is defined
within the type of a parameter, to properly cope with cases like,
e.g.,
int bar(struct T2 { int x; } y) {
struct T2 z;
}
We can also do similar things wherever there is a type specifier,
e.g., to keep track of where the definition of S occurs in this
legal C99 code:
(struct S { int x, y; } *)0
llvm-svn: 72555
given DeclContext is dependent on type parameters. Use this to
properly determine whether a TagDecl is dependent; previously, we were
missing the case where the TagDecl is a local class of a member
function of a class template (phew!).
Also, make sure that, when we instantiate declarations within a member
function of a class template (or a function template, eventually),
that we add those declarations to the "instantiated locals" map so
that they can be found when instantiating declaration references.
Unfortunately, I was not able to write a useful test for this change,
although the assert() that fires when uncommenting the FIXME'd line in
test/SemaTemplate/instantiate-declref.cpp tells the "experienced user"
that we're now doing the right thing.
llvm-svn: 72526
parser. Rather than placing all of the delayed member function
declarations and inline definitions into a single bucket corresponding
to the top-level class, we instead mirror the nesting structure of the
nested classes and place the delayed member functions into their
appropriate place. Then, when we actually parse the delayed member
function declarations, set up the scope stack the same way as it was
when we originally saw the declaration, so that we can find, e.g.,
template parameters that are in scope.
llvm-svn: 72502
declaration references. The key realization is that dependent Decls,
which actually require instantiation, can only refer to the current
instantiation or members thereof. And, since the current context
during instantiation contains all of those members of the current
instantiation, we can simply find the real instantiate that matches up
with the "current instantiation" template.
llvm-svn: 72486
within a template now have a link back to the enumeration from which
they were instantiated. This means that we can now find the
instantiation of an anonymous enumeration.
llvm-svn: 72482
references. There are several smallish fixes here:
- Make sure we look through template parameter scope when
determining whether we're parsing a nested class (or nested class
*template*). This makes sure that we delay parsing the bodies of
inline member functions until after we're out of the outermost
class (template) scope.
- Since the bodies of member functions are always parsed
"out-of-line", even when they were declared in-line, teach
unqualified name lookup to look into the (semantic) parents.
- Use the new InstantiateDeclRef to handle the instantiation of a
reference to a declaration (in DeclRefExpr), which drastically
simplifies template instantiation for DeclRefExprs.
- When we're instantiating a ParmVarDecl, it must be in the current
instantiation scope, so only look there.
Also, remove the #if 0's and FIXME's from the dynarray example, which
now compiles and executes thanks to Anders and Eli.
llvm-svn: 72481
instantiation of a declaration from the template version (or version
that lives in a template) and a given set of template arguments. This
needs much, much more testing, but it suffices for simple examples
like
typedef T* iterator;
iterator begin();
llvm-svn: 72461
an integral constant expression, maintain a cache of the value and the
is-an-ICE flag within the VarDecl itself. This eliminates
exponential-time behavior of the Fibonacci template metaprogram.
llvm-svn: 72428
argument. This avoids the argument from being silenced when the argument is
the NULL macro, which is defined in a system header. This also makes the output
a bit nicer, e.g.:
t.c:8:3: warning: null passed to a callee which requires a non-null argument
func1(NULL, cp2, i1);
^ ~~~~
vs something like:
t.c:8:10: warning: argument is null where non-null is required
func1(NULL, cp2, i1);
^
llvm-svn: 72393
expressions. We are now missing template instantiation logic for only
three classes of expressions:
- Blocks-related expressions (BlockExpr, BlockDeclRefExpr)
- C++ default argument expressions
- Objective-C expressions
Additionally, our handling of DeclRefExpr is still quite poor, since
it cannot handle references to many kinds of declarations.
As part of this change, converted the TemplateExprInstantiator to use
iteration through all of the expressions via clang/AST/StmtNodes.def,
ensuring that we don't forget to add template instantiation logic for
any new expression node kinds.
llvm-svn: 72303
expressions. This change introduces another AST node,
CXXUnresolvedMemberExpr, that captures member references (x->m, x.m)
when the base of the expression (the "x") is type-dependent, and we
therefore cannot resolve the member reference yet.
Note that our parsing of member references for C++ is still quite
poor, e.g., we don't handle x->Base::m or x->operator int.
llvm-svn: 72281
and objects of this class are derived from 'NSProxy'.
Under such conditions, which means that every method possible is
implemented in the class, we should not issue "Method definition not found"
warnings.
llvm-svn: 72267
can. Also, delay semantic analysis of initialization for
value-dependent as well as type-dependent expressions, since we can't
always properly type-check a value-dependent expression.
llvm-svn: 72233
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
llvm-svn: 72214
llvm::SmallVector that owns all of the AST nodes inside of it. This
RAII class is used to ensure proper destruction of AST nodes when
template instantiation fails.
llvm-svn: 72186
temporaries are generated for some object-constructing expressions in
templates that are not type-dependent.
Also, be sure to introduce the variable from a CXXConditionDeclExpr
into the set of instantiated local variables.
llvm-svn: 72185
describe the construction of a value of a given type using function
syntax, e.g.,
T(a1, a2, ..., aN)
when the type or any of its arguments are type-dependent. In this
case, we don't know what kind of type-construction this will be: it
might construct a temporary of type 'T' (which might be a class or
non-class type) or might perform a conversion to type 'T'. Also,
implement printing of and template instantiation for this new
expression type. Due to the change in Sema::ActOnCXXTypeConstructExpr,
our existing tests cover template instantiation of this new expression
node.
llvm-svn: 72176
statement was using an rvalue reference during the template
definition. However, template instantiations based on an lvalue
reference type are well-formed, so we delay checking of these property
until template instantiation time.
llvm-svn: 72041
kinds of statements (in the instantiation logic). No functionality
change, but now we'll get linker errors if we add a statement but
forget to introduce its instantiation logic.
llvm-svn: 72031
template, introduce that member function into the template
instantiation stack. Also, add diagnostics showing the member function
within the instantiation stack and clean up the qualified-name
printing so that we get something like:
note: in instantiation of member function 'Switch1<int, 2, 2>::f'
requested here
in the template instantiation backtrace.
llvm-svn: 72015
alternatives, but please correct me if I'm wrong.
I eventually plan to assert in mergeTypes that we aren't in C++ mode
because composite types are fundamentally not a part of C++. The
remaining callers for code in the regression tests are
Sema::WarnConflictingTypedMethods and CodeGenFunction::EmitFunctionProlog;
I'm not quite sure what the correct approach is for those callers.
llvm-svn: 71946
This patch isn't quite ideal in that it eliminates the warning for
constructs like "int a = {1};", where the braces are in fact redundant.
However, that would have required a bunch of refactoring, and it's
much less likely to cause confusion compared to redundant nested braces.
llvm-svn: 71939
constructors and destructors. This is a requirement of
DeclarationNameTable::getCXXSpecialName that we weren't assert()'ing,
so it should have been caught much earlier :(
Big thanks to Anders for the test case.
llvm-svn: 71895
- Skip semantic analysis of the "if" condition if it is type-dependent.
- Added the location of the "else" keyword into IfStmt, so that we can
provide it for type-checking after template instantiation.
llvm-svn: 71875
template to the FunctionDecls from which they were instantiated. This
is a necessary first step to support instantiation of the definitions
of such functions, but by itself does essentially nothing.
llvm-svn: 71792
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
cf_returns_retained. Currently this attribute can now be applied to any
Objective-C method or C function that returns a pointer or Objective-C object
type.
Modify the tablegen definition of diagnostic 'warn_attribute_wrong_decl_type' to
expect that the diagnostics infrastructure will add quotes around the attribute
name when appropriate. Alonq with this change, I modified the places where this
warning is issued to passed the attribute's IdentifierInfo* instead of having a
hard-coded C constant string.
llvm-svn: 71718
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
templates. In particular:
- An explicit instantiation can follow an implicit instantiation (we
were improperly diagnosing this as an error, previously).
- In C++0x, an explicit instantiation that follows an explicit
specialization of the same template specialization is ignored. In
C++98, we just emit an extension warning.
- In C++0x, an explicit instantiation must be in a namespace
enclosing the original template. C++98 has no such requirement.
Also, fixed a longstanding FIXME regarding the integral type that is
used for the size of a constant array type when it is being instantiated.
llvm-svn: 71689
It seems dubious to me that isIntegerType() returns true for
vectors of integers, but not complex integers. This should
probably be rethought, I'll file a bugzilla.
llvm-svn: 71640
don't support. While it would be nice to support this eventually,
this form is not common at all (just seen in gcc testsuite) and
it might be better to model vector_size as a type attribute anyway.
For now just emit a nice error on it.
llvm-svn: 71633
still aren't instantiating the definitions of class template members,
and core issues 275 and 259 will both affect the checking that we do
for explicit instantiations (but are not yet implemented).
llvm-svn: 71613
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
Per the FIXME, it might be interesting to track whether the inline keyword
was also used on the method, but for now we don't do this. Testcase pending.
llvm-svn: 71589
TemplateArgumentList. This avoids the need to pass around
pointer/length pairs of template arguments lists, and will eventually
make it easier to introduce member templates and variadic templates.
llvm-svn: 71517
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:
template<typename T, typename U>
struct X {
typedef T type;
X* x1; // current instantiation
X<T, U> *x2; // current instantiation
X<U, T> *x3; // not current instantiation
::X<type, U> *x4; // current instantiation
X<typename X<type, U>::type, U>: *x5; // current instantiation
};
llvm-svn: 71471
template. The injected-class-name is either a type or a template,
depending on whether a '<' follows it. As a type, the
injected-class-name's template argument list contains its template
parameters in declaration order.
As part of this, add logic for canonicalizing declarations, and be
sure to canonicalize declarations used in template names and template
arguments.
A TagType is dependent if the declaration it references is dependent.
I'm not happy about the rather complicated protocol needed to use
ASTContext::getTemplateSpecializationType.
llvm-svn: 71408
of the underlying _N builtin, not the the type of the pointee of the
actual type. This ensures that atomics involving pointers end up
using the correct integer type when they are resolved, avoiding
aborts in codegen.
llvm-svn: 71218
semantic rules that gcc and icc use. This implements the variadic
and concrete versions as builtins and has sema do the
disambiguation. There are probably a bunch of details to finish up
but this seems like a large monotonic step forward :)
llvm-svn: 71212
'objc_ownership_cfretain' -> 'cf_ownership_retain'
'objc_ownership_cfrelease' -> 'cf_ownership_release'
Motivation: Core Foundation objects can be used in isolation from Objective-C,
and this forces users to reason about the separate semantics of CF objects. More
Sema support pending.
llvm-svn: 70884
return type and the selector. This is inconsistent with C functions
(where such attributes would be placed on the return type, not the the
FunctionDecl), and is inconsistent with what people are use to seeing.
llvm-svn: 70878
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
llvm-svn: 70829
number is not mentioned in the asm string, let it past sema.
Right now these are currently rejected by the llvm code generator
but this will be fixed next.
llvm-svn: 70670
promotions. This should be fixed by not modeling asm operands (which
require the ()'s according to the grammar) as not being paren exprs.
llvm-svn: 70668
reason for adding these is to error out in CodeGen when trying to generate
them instead of silently emitting a call to a non-existent function.
(Note that it is not valid to lower these to setjmp/longjmp; in addition
to that lowering being different from the intent, setjmp and longjmp
require a larger buffer.)
llvm-svn: 70658
into the left-hand side of an assignment expression. This completes
most of PR3500; the only remaining part is to deal with the
GCC-specific implementation-defined behavior for "unsigned long" (and
other) bit-fields.
llvm-svn: 70623
applied to ObjCMethodDecls, not just parameters. This allows one to specific
side-effects on the receiver of a message expression. No checker support yet.
llvm-svn: 70505
appear between the return type and the selector. This is a separate code path
from regular attribute processing, as we only want to (a) accept only a specific
set of attributes in this place and (b) want to distinguish to clients the
context in which an attribute was added to an ObjCMethodDecl.
Currently, the attribute 'objc_ownership_returns' is the only attribute that
uses this new feature. Shortly I will add a warning for 'objc_ownership_returns'
to be placed at the end of a method declaration.
llvm-svn: 70504
compatible with VC++ and GCC. The codegen/mangling angle hasn't
been fully ironed out yet. Note that we accept int128_t even in
32-bit mode, unlike gcc.
llvm-svn: 70464
type and argument types are missing, and let return type deduction
happen before we give errors for returning from a noreturn block.
Radar 6441502
llvm-svn: 70413
1. In a struct field redefinition, don't mark the struct erroneous. The
field is erroneous, but the struct is otherwise well formed.
2. Don't emit diagnostics about functions that are known to be broken already.
Either fix is sufficient to silence the second diagnostic in the example,
but the combination is better :)
llvm-svn: 70371
"function designator".
(This causes a minor glitch in the
diagnostics for C++ member pointers, but we weren't printing the
right diagnostic there anyway.)
llvm-svn: 70307
mode and in the presence of __gnu_inline__ attributes. This should fix
both PR3989 and PR4069.
As part of this, we now keep track of all of the attributes attached
to each declaration even after we've performed declaration
merging. This fixes PR3264.
llvm-svn: 70292
that if we're going to print an extension warning anyway,
there's no point to changing behavior based on NoExtensions: it will
only make error recovery worse.
Note that this doesn't cause any behavior change because NoExtensions
isn't used by the current front-end. I'm still considering what to do about
the remaining use of NoExtensions in IdentifierTable.cpp.
llvm-svn: 70273
as 'objc_ownership_cfretain' except that the method acts like a CFRetain instead
of a [... retain] (important in GC modes). Checker support is wired up, but
currently only for Objective-C message expressions (not function calls).
llvm-svn: 70218
before r69391: typedef redefinition is an error by default, but if
*either* the old or new definition are from a system header, we silence
it.
llvm-svn: 70177
offsetof correctly in the presence of anonymous structs/unions.
This could definitely use some cleanup, but I don't really want to mess
with the anonymous union/struct code.
llvm-svn: 70156
Before we emitted:
$ clang t.c -S -m64
llvm: error: Unsupported asm: input constraint with a matching output constraint of incompatible type!
Now we produce:
$ clang t.c -S -m64
t.c:5:40: error: unsupported inline asm: input with type 'unsigned long' matching output with type 'int'
asm volatile("foo " : "=a" (a) :"0" (b));
~~~ ~^~
llvm-svn: 70142
Overall, I'm not particularly happy with the current situation regarding
constant expression diagnostics, but I plan to improve it at some point.
llvm-svn: 70089
VerifyIntegerConstantExpression instead of isIntegerConstantExpr.
This makes it ext-warn but tolerate things that fold to a constant
but that are not valid i-c-e's.
There must be a bug in the i-c-e computation though, because it
doesn't catch this case even with pedantic.
This also switches the later code to use EvaluateAsInt which is
simpler and handles everything that evaluate does.
llvm-svn: 70081
always return a non-null QualType + error bit. This fixes a bunch of
cases that didn't check for null result (and could thus crash) and eliminates
some crappy code scattered throughout sema.
This also improves the diagnostics in the recursive struct case to eliminate
a bogus second error. It also cleans up the case added to function.c by forming
a proper function type even though the declarator is erroneous, allowing the
parameter to be added to the function. Before:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
t.c:4:3: error: use of undeclared identifier 'P'
P+1;
^
After:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
llvm-svn: 70023
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
parameters in a functiondecl, even if the decl is invalid and has a confusing
Declarator. On the testcase, we now emit one beautiful diagnostic:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*)
^
GCC 4.0 produces:
t.c:2: error: syntax error before ‘f’
t.c: In function ‘f’:
t.c:2: error: parameter name omitted
and GCC 4.2:
t.c:2: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘f’
llvm-svn: 70016
remove a special case that was apparently for typeof() and
generalize the code in SemaDecl that handles typedefs to
handle any sugar type (including typedef, typeof, etc).
Improve comment to make it more clear what is going on.
llvm-svn: 70015
typedef void foo(void);
We get a typedef for a functiontypeproto with no arguments, not
one with one argument and type void. This means the code being
removed in SemaDecl is dead.
llvm-svn: 70013
to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function increments the reference count of a passed
object.
llvm-svn: 70005
up to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function returns an owned an Objective-C object.
llvm-svn: 70001
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
pools, combined). The methods in the global method pool are lazily
loaded from an on-disk hash table when Sema looks into its version of
the hash tables.
llvm-svn: 69989