walks through DeclContexts properly, and prints more of the
information available in the AST. The functionality is still available
via -ast-print, -ast-dump, etc., and also via the new member functions
Decl::dump() and Decl::print().
llvm-svn: 72597
printing logic to help customize the output. For now, we use this
rather than a special flag to suppress the "struct" when printing
"struct X" and to print the Boolean type as "bool" in C++ but "_Bool"
in C.
llvm-svn: 72590
instantiation of tags local to member functions of class templates
(and, eventually, function templates) works when the tag is defined as
part of the decl-specifier-seq, e.g.,
struct S { T x, y; } s1;
Also, make sure that we don't try to default-initialize a dependent
type.
llvm-svn: 72568
specifier resulted in the creation of a new TagDecl node, which
happens either when the tag specifier was a definition or when the tag
specifier was the first declaration of that tag type. This information
has several uses, the first of which is implemented in this commit:
1) In C++, one is not allowed to define tag types within a type
specifier (e.g., static_cast<struct S { int x; } *>(0) is
ill-formed) or within the result or parameter types of a
function. We now diagnose this.
2) We can extend DeclGroups to contain information about any tags
that are declared/defined within the declaration specifiers of a
variable, e.g.,
struct Point { int x, y, z; } p;
This will help improve AST printing and template instantiation,
among other things.
3) For C99, we can keep track of whether a tag type is defined
within the type of a parameter, to properly cope with cases like,
e.g.,
int bar(struct T2 { int x; } y) {
struct T2 z;
}
We can also do similar things wherever there is a type specifier,
e.g., to keep track of where the definition of S occurs in this
legal C99 code:
(struct S { int x, y; } *)0
llvm-svn: 72555
given DeclContext is dependent on type parameters. Use this to
properly determine whether a TagDecl is dependent; previously, we were
missing the case where the TagDecl is a local class of a member
function of a class template (phew!).
Also, make sure that, when we instantiate declarations within a member
function of a class template (or a function template, eventually),
that we add those declarations to the "instantiated locals" map so
that they can be found when instantiating declaration references.
Unfortunately, I was not able to write a useful test for this change,
although the assert() that fires when uncommenting the FIXME'd line in
test/SemaTemplate/instantiate-declref.cpp tells the "experienced user"
that we're now doing the right thing.
llvm-svn: 72526
parser. Rather than placing all of the delayed member function
declarations and inline definitions into a single bucket corresponding
to the top-level class, we instead mirror the nesting structure of the
nested classes and place the delayed member functions into their
appropriate place. Then, when we actually parse the delayed member
function declarations, set up the scope stack the same way as it was
when we originally saw the declaration, so that we can find, e.g.,
template parameters that are in scope.
llvm-svn: 72502
declaration references. The key realization is that dependent Decls,
which actually require instantiation, can only refer to the current
instantiation or members thereof. And, since the current context
during instantiation contains all of those members of the current
instantiation, we can simply find the real instantiate that matches up
with the "current instantiation" template.
llvm-svn: 72486
within a template now have a link back to the enumeration from which
they were instantiated. This means that we can now find the
instantiation of an anonymous enumeration.
llvm-svn: 72482
references. There are several smallish fixes here:
- Make sure we look through template parameter scope when
determining whether we're parsing a nested class (or nested class
*template*). This makes sure that we delay parsing the bodies of
inline member functions until after we're out of the outermost
class (template) scope.
- Since the bodies of member functions are always parsed
"out-of-line", even when they were declared in-line, teach
unqualified name lookup to look into the (semantic) parents.
- Use the new InstantiateDeclRef to handle the instantiation of a
reference to a declaration (in DeclRefExpr), which drastically
simplifies template instantiation for DeclRefExprs.
- When we're instantiating a ParmVarDecl, it must be in the current
instantiation scope, so only look there.
Also, remove the #if 0's and FIXME's from the dynarray example, which
now compiles and executes thanks to Anders and Eli.
llvm-svn: 72481
instantiation of a declaration from the template version (or version
that lives in a template) and a given set of template arguments. This
needs much, much more testing, but it suffices for simple examples
like
typedef T* iterator;
iterator begin();
llvm-svn: 72461
an integral constant expression, maintain a cache of the value and the
is-an-ICE flag within the VarDecl itself. This eliminates
exponential-time behavior of the Fibonacci template metaprogram.
llvm-svn: 72428
argument. This avoids the argument from being silenced when the argument is
the NULL macro, which is defined in a system header. This also makes the output
a bit nicer, e.g.:
t.c:8:3: warning: null passed to a callee which requires a non-null argument
func1(NULL, cp2, i1);
^ ~~~~
vs something like:
t.c:8:10: warning: argument is null where non-null is required
func1(NULL, cp2, i1);
^
llvm-svn: 72393
expressions. We are now missing template instantiation logic for only
three classes of expressions:
- Blocks-related expressions (BlockExpr, BlockDeclRefExpr)
- C++ default argument expressions
- Objective-C expressions
Additionally, our handling of DeclRefExpr is still quite poor, since
it cannot handle references to many kinds of declarations.
As part of this change, converted the TemplateExprInstantiator to use
iteration through all of the expressions via clang/AST/StmtNodes.def,
ensuring that we don't forget to add template instantiation logic for
any new expression node kinds.
llvm-svn: 72303
expressions. This change introduces another AST node,
CXXUnresolvedMemberExpr, that captures member references (x->m, x.m)
when the base of the expression (the "x") is type-dependent, and we
therefore cannot resolve the member reference yet.
Note that our parsing of member references for C++ is still quite
poor, e.g., we don't handle x->Base::m or x->operator int.
llvm-svn: 72281
and objects of this class are derived from 'NSProxy'.
Under such conditions, which means that every method possible is
implemented in the class, we should not issue "Method definition not found"
warnings.
llvm-svn: 72267
can. Also, delay semantic analysis of initialization for
value-dependent as well as type-dependent expressions, since we can't
always properly type-check a value-dependent expression.
llvm-svn: 72233
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
llvm-svn: 72214
llvm::SmallVector that owns all of the AST nodes inside of it. This
RAII class is used to ensure proper destruction of AST nodes when
template instantiation fails.
llvm-svn: 72186
temporaries are generated for some object-constructing expressions in
templates that are not type-dependent.
Also, be sure to introduce the variable from a CXXConditionDeclExpr
into the set of instantiated local variables.
llvm-svn: 72185
describe the construction of a value of a given type using function
syntax, e.g.,
T(a1, a2, ..., aN)
when the type or any of its arguments are type-dependent. In this
case, we don't know what kind of type-construction this will be: it
might construct a temporary of type 'T' (which might be a class or
non-class type) or might perform a conversion to type 'T'. Also,
implement printing of and template instantiation for this new
expression type. Due to the change in Sema::ActOnCXXTypeConstructExpr,
our existing tests cover template instantiation of this new expression
node.
llvm-svn: 72176
statement was using an rvalue reference during the template
definition. However, template instantiations based on an lvalue
reference type are well-formed, so we delay checking of these property
until template instantiation time.
llvm-svn: 72041
kinds of statements (in the instantiation logic). No functionality
change, but now we'll get linker errors if we add a statement but
forget to introduce its instantiation logic.
llvm-svn: 72031
template, introduce that member function into the template
instantiation stack. Also, add diagnostics showing the member function
within the instantiation stack and clean up the qualified-name
printing so that we get something like:
note: in instantiation of member function 'Switch1<int, 2, 2>::f'
requested here
in the template instantiation backtrace.
llvm-svn: 72015
alternatives, but please correct me if I'm wrong.
I eventually plan to assert in mergeTypes that we aren't in C++ mode
because composite types are fundamentally not a part of C++. The
remaining callers for code in the regression tests are
Sema::WarnConflictingTypedMethods and CodeGenFunction::EmitFunctionProlog;
I'm not quite sure what the correct approach is for those callers.
llvm-svn: 71946
This patch isn't quite ideal in that it eliminates the warning for
constructs like "int a = {1};", where the braces are in fact redundant.
However, that would have required a bunch of refactoring, and it's
much less likely to cause confusion compared to redundant nested braces.
llvm-svn: 71939
constructors and destructors. This is a requirement of
DeclarationNameTable::getCXXSpecialName that we weren't assert()'ing,
so it should have been caught much earlier :(
Big thanks to Anders for the test case.
llvm-svn: 71895
- Skip semantic analysis of the "if" condition if it is type-dependent.
- Added the location of the "else" keyword into IfStmt, so that we can
provide it for type-checking after template instantiation.
llvm-svn: 71875
template to the FunctionDecls from which they were instantiated. This
is a necessary first step to support instantiation of the definitions
of such functions, but by itself does essentially nothing.
llvm-svn: 71792
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
cf_returns_retained. Currently this attribute can now be applied to any
Objective-C method or C function that returns a pointer or Objective-C object
type.
Modify the tablegen definition of diagnostic 'warn_attribute_wrong_decl_type' to
expect that the diagnostics infrastructure will add quotes around the attribute
name when appropriate. Alonq with this change, I modified the places where this
warning is issued to passed the attribute's IdentifierInfo* instead of having a
hard-coded C constant string.
llvm-svn: 71718
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
templates. In particular:
- An explicit instantiation can follow an implicit instantiation (we
were improperly diagnosing this as an error, previously).
- In C++0x, an explicit instantiation that follows an explicit
specialization of the same template specialization is ignored. In
C++98, we just emit an extension warning.
- In C++0x, an explicit instantiation must be in a namespace
enclosing the original template. C++98 has no such requirement.
Also, fixed a longstanding FIXME regarding the integral type that is
used for the size of a constant array type when it is being instantiated.
llvm-svn: 71689
It seems dubious to me that isIntegerType() returns true for
vectors of integers, but not complex integers. This should
probably be rethought, I'll file a bugzilla.
llvm-svn: 71640
don't support. While it would be nice to support this eventually,
this form is not common at all (just seen in gcc testsuite) and
it might be better to model vector_size as a type attribute anyway.
For now just emit a nice error on it.
llvm-svn: 71633
still aren't instantiating the definitions of class template members,
and core issues 275 and 259 will both affect the checking that we do
for explicit instantiations (but are not yet implemented).
llvm-svn: 71613
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
Per the FIXME, it might be interesting to track whether the inline keyword
was also used on the method, but for now we don't do this. Testcase pending.
llvm-svn: 71589
TemplateArgumentList. This avoids the need to pass around
pointer/length pairs of template arguments lists, and will eventually
make it easier to introduce member templates and variadic templates.
llvm-svn: 71517
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:
template<typename T, typename U>
struct X {
typedef T type;
X* x1; // current instantiation
X<T, U> *x2; // current instantiation
X<U, T> *x3; // not current instantiation
::X<type, U> *x4; // current instantiation
X<typename X<type, U>::type, U>: *x5; // current instantiation
};
llvm-svn: 71471
template. The injected-class-name is either a type or a template,
depending on whether a '<' follows it. As a type, the
injected-class-name's template argument list contains its template
parameters in declaration order.
As part of this, add logic for canonicalizing declarations, and be
sure to canonicalize declarations used in template names and template
arguments.
A TagType is dependent if the declaration it references is dependent.
I'm not happy about the rather complicated protocol needed to use
ASTContext::getTemplateSpecializationType.
llvm-svn: 71408
of the underlying _N builtin, not the the type of the pointee of the
actual type. This ensures that atomics involving pointers end up
using the correct integer type when they are resolved, avoiding
aborts in codegen.
llvm-svn: 71218
semantic rules that gcc and icc use. This implements the variadic
and concrete versions as builtins and has sema do the
disambiguation. There are probably a bunch of details to finish up
but this seems like a large monotonic step forward :)
llvm-svn: 71212
'objc_ownership_cfretain' -> 'cf_ownership_retain'
'objc_ownership_cfrelease' -> 'cf_ownership_release'
Motivation: Core Foundation objects can be used in isolation from Objective-C,
and this forces users to reason about the separate semantics of CF objects. More
Sema support pending.
llvm-svn: 70884
return type and the selector. This is inconsistent with C functions
(where such attributes would be placed on the return type, not the the
FunctionDecl), and is inconsistent with what people are use to seeing.
llvm-svn: 70878
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
llvm-svn: 70829
number is not mentioned in the asm string, let it past sema.
Right now these are currently rejected by the llvm code generator
but this will be fixed next.
llvm-svn: 70670
promotions. This should be fixed by not modeling asm operands (which
require the ()'s according to the grammar) as not being paren exprs.
llvm-svn: 70668
reason for adding these is to error out in CodeGen when trying to generate
them instead of silently emitting a call to a non-existent function.
(Note that it is not valid to lower these to setjmp/longjmp; in addition
to that lowering being different from the intent, setjmp and longjmp
require a larger buffer.)
llvm-svn: 70658
into the left-hand side of an assignment expression. This completes
most of PR3500; the only remaining part is to deal with the
GCC-specific implementation-defined behavior for "unsigned long" (and
other) bit-fields.
llvm-svn: 70623
applied to ObjCMethodDecls, not just parameters. This allows one to specific
side-effects on the receiver of a message expression. No checker support yet.
llvm-svn: 70505
appear between the return type and the selector. This is a separate code path
from regular attribute processing, as we only want to (a) accept only a specific
set of attributes in this place and (b) want to distinguish to clients the
context in which an attribute was added to an ObjCMethodDecl.
Currently, the attribute 'objc_ownership_returns' is the only attribute that
uses this new feature. Shortly I will add a warning for 'objc_ownership_returns'
to be placed at the end of a method declaration.
llvm-svn: 70504
compatible with VC++ and GCC. The codegen/mangling angle hasn't
been fully ironed out yet. Note that we accept int128_t even in
32-bit mode, unlike gcc.
llvm-svn: 70464
type and argument types are missing, and let return type deduction
happen before we give errors for returning from a noreturn block.
Radar 6441502
llvm-svn: 70413
1. In a struct field redefinition, don't mark the struct erroneous. The
field is erroneous, but the struct is otherwise well formed.
2. Don't emit diagnostics about functions that are known to be broken already.
Either fix is sufficient to silence the second diagnostic in the example,
but the combination is better :)
llvm-svn: 70371
"function designator".
(This causes a minor glitch in the
diagnostics for C++ member pointers, but we weren't printing the
right diagnostic there anyway.)
llvm-svn: 70307
mode and in the presence of __gnu_inline__ attributes. This should fix
both PR3989 and PR4069.
As part of this, we now keep track of all of the attributes attached
to each declaration even after we've performed declaration
merging. This fixes PR3264.
llvm-svn: 70292
that if we're going to print an extension warning anyway,
there's no point to changing behavior based on NoExtensions: it will
only make error recovery worse.
Note that this doesn't cause any behavior change because NoExtensions
isn't used by the current front-end. I'm still considering what to do about
the remaining use of NoExtensions in IdentifierTable.cpp.
llvm-svn: 70273
as 'objc_ownership_cfretain' except that the method acts like a CFRetain instead
of a [... retain] (important in GC modes). Checker support is wired up, but
currently only for Objective-C message expressions (not function calls).
llvm-svn: 70218
before r69391: typedef redefinition is an error by default, but if
*either* the old or new definition are from a system header, we silence
it.
llvm-svn: 70177
offsetof correctly in the presence of anonymous structs/unions.
This could definitely use some cleanup, but I don't really want to mess
with the anonymous union/struct code.
llvm-svn: 70156
Before we emitted:
$ clang t.c -S -m64
llvm: error: Unsupported asm: input constraint with a matching output constraint of incompatible type!
Now we produce:
$ clang t.c -S -m64
t.c:5:40: error: unsupported inline asm: input with type 'unsigned long' matching output with type 'int'
asm volatile("foo " : "=a" (a) :"0" (b));
~~~ ~^~
llvm-svn: 70142
Overall, I'm not particularly happy with the current situation regarding
constant expression diagnostics, but I plan to improve it at some point.
llvm-svn: 70089
VerifyIntegerConstantExpression instead of isIntegerConstantExpr.
This makes it ext-warn but tolerate things that fold to a constant
but that are not valid i-c-e's.
There must be a bug in the i-c-e computation though, because it
doesn't catch this case even with pedantic.
This also switches the later code to use EvaluateAsInt which is
simpler and handles everything that evaluate does.
llvm-svn: 70081
always return a non-null QualType + error bit. This fixes a bunch of
cases that didn't check for null result (and could thus crash) and eliminates
some crappy code scattered throughout sema.
This also improves the diagnostics in the recursive struct case to eliminate
a bogus second error. It also cleans up the case added to function.c by forming
a proper function type even though the declarator is erroneous, allowing the
parameter to be added to the function. Before:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
t.c:4:3: error: use of undeclared identifier 'P'
P+1;
^
After:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
llvm-svn: 70023
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
parameters in a functiondecl, even if the decl is invalid and has a confusing
Declarator. On the testcase, we now emit one beautiful diagnostic:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*)
^
GCC 4.0 produces:
t.c:2: error: syntax error before ‘f’
t.c: In function ‘f’:
t.c:2: error: parameter name omitted
and GCC 4.2:
t.c:2: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘f’
llvm-svn: 70016
remove a special case that was apparently for typeof() and
generalize the code in SemaDecl that handles typedefs to
handle any sugar type (including typedef, typeof, etc).
Improve comment to make it more clear what is going on.
llvm-svn: 70015
typedef void foo(void);
We get a typedef for a functiontypeproto with no arguments, not
one with one argument and type void. This means the code being
removed in SemaDecl is dead.
llvm-svn: 70013
to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function increments the reference count of a passed
object.
llvm-svn: 70005
up to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function returns an owned an Objective-C object.
llvm-svn: 70001
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
pools, combined). The methods in the global method pool are lazily
loaded from an on-disk hash table when Sema looks into its version of
the hash tables.
llvm-svn: 69989
Several changes here:
1. We change Type::isIncompleteType to realize that forward declared
interfaces are incomplete. This eliminate special case code for this
from the sizeof path, and starts us rejecting P[4] when P is a pointer
to an incomplete interface.
2. Explicitly reject P[4] when P points to an interface in non-fragile ABI
mode.
3. Switch the sizeof(interface) diagnostic back to an error instead of a
warning in non-fragile abi mode.
llvm-svn: 69943
As part of this, make ObjCImplDecl inherit from NamedDecl (since
ObjCImplementationDecls now need to have names so that they can be
found). This brings ObjCImplDecl very, very close to
ObjCContainerDecl; we may be able to merge them soon.
llvm-svn: 69941
their own namespace (IDNS_Protocol) and use the normal name-lookup
routines to find them. Aside from the simplification this provides
(one less DenseMap!), it means that protocols will be lazily
deserialized from PCH files.
Make the code size of the selector table block match the code size of
the type and decl blocks.
llvm-svn: 69939
SEL, Class, Protocol, CFConstantString, and
__objcFastEnumerationState. With this, we can now run the Objective-C
methods and properties PCH tests.
llvm-svn: 69932
This enables class recognition to work with PCH. I believe this means we can remove Sema::ObjCInterfaceDecls and it's usage within Sema::LookupName(). Will investigate.
llvm-svn: 69891
methods, class methods, and property implementations) and instead
place all of these entities into the DeclContext.
This eliminates more linear walks when looking for class or instance
methods and should make PCH (de-)serialization of ObjCDecls trivial
(and lazy).
llvm-svn: 69849
in a bunch of declarations from the PCH file. We're down to loading
very few declarations in Carbon-prefixed "Hello, World!":
*** PCH Statistics:
6/20693 types read (0.028995%)
7/59230 declarations read (0.011818%)
50/44914 identifiers read (0.111324%)
0/32954 statements read (0.000000%)
5/6187 macros read (0.080815%)
llvm-svn: 69825
start of the declspec. The fixit still goes there, and we underline
the declspec. This helps when the start of the declspec came from a
macro that expanded from a system header. For example, we now produce:
t.c:2:8: warning: type specifier missing, defaults to 'int' [-Wimplicit-int]
static x;
~~~~~~ ^
llvm-svn: 69777
extern. Previously we would warn about it and ignore the attribute.
This is incorrect, it should be handled as a c89 "extern inline"
function. Many thanks to Matthieu Castet for pointing this out and
beating me over the head until I got it.
PR3988: extern inline function are not externally visible
llvm-svn: 69756
mark exactly the blocks which have references that are "live through".
This fixes a rejects valid:
rdar://6808730 - [sema] [blocks] block rejected at global scope
llvm-svn: 69738
identifiers from a precompiled header.
This patch changes the primary name lookup method for entities within
a precompiled header. Previously, we would load all of the names of
declarations at translation unit scope into a large DenseMap (inside
the TranslationUnitDecl's DeclContext), and then perform a special
"last resort" lookup into this DeclContext when we knew there was a
PCH file (see Sema::LookupName). Now, when we see an identifier named
for the first time, we load all of the declarations with that name
that are visible from the translation unit into the IdentifierInfo's
chain of declarations. Thus, the explicit "look into the translation
unit's DeclContext" code is gone, and Sema effectively uses the same
IdentifierInfo-based name lookup mechanism whether we are using a PCH
file or not.
This approach should help PCH scale with the size of the input program
rather than the size of the PCH file. The "Hello, World!" application
with Carbon.h as a PCH file now loads 20% of the identifiers in the
PCH file rather than 85% of the identifiers.
90% of the 20% of identifiers loaded are actually loaded when we
deserialize the preprocessor state. The next step is to make the
preprocessor load macros lazily, which should drastically reduce the
number of types, declarations, and identifiers loaded for "Hello,
World".
llvm-svn: 69737
@implementation that closes a @class delcaration.
- I don't know how to make a test case for this, but this strengthens
the invariants that hold internally. The functionality change here
is the edit to SemaDeclObjC.cpp.
llvm-svn: 69728
tentative definitions off to the ASTConsumer at the end of the
translation unit.
Eliminate CodeGen's internal tracking of tentative definitions, and
instead hook into ASTConsumer::CompleteTentativeDefinition. Also,
tweak the definition-deferal logic for C++, where there are no
tentative definitions.
Fixes <rdar://problem/6808352>, and will make it much easier for
precompiled headers to cope with tentative definitions in the future.
llvm-svn: 69681
also gets access to the Sema object performing semantic analysis. This
will be used by the PCH writer to serialize Sema state.
No functionality change.
llvm-svn: 69595
minor accepts-invalid regressions, but we weren't really rejecting them for
the right reason. We really need a more general solution to detect all the
cases of the promotion of arrays with a register storage class.
llvm-svn: 69586
statements don't end up in the LabelMap so we don't have a quick way
to filter them. We could add state to Sema (a "has vla" and "has
jump" bit) to try to filter this out, but that would be sort of gross
and I'm not convinced it is the best way. Thoughts welcome.
llvm-svn: 69476
specific bad case instead of on the switch. Putting it on the
switch means you don't know what case is the problem. For
example:
scope-check.c:54:3: error: illegal switch case into protected scope
case 2:
^
scope-check.c:53:9: note: jump bypasses initialization of variable length array
int a[x];
^
llvm-svn: 69462
produce better diagnostics, and be more correct in ObjC cases (fixing
rdar://6803963).
An example is that we now diagnose:
int test1(int x) {
goto L;
int a[x];
int b[x];
L:
return sizeof a;
}
with:
scope-check.c:15:3: error: illegal goto into protected scope
goto L;
^
scope-check.c:17:7: note: scope created by variable length array
int b[x];
^
scope-check.c:16:7: note: scope created by variable length array
int a[x];
^
instead of just saying "invalid jump". An ObjC example is:
void test1() {
goto L;
@try {
L: ;
} @finally {
}
}
t.m:6:3: error: illegal goto into protected scope
goto L;
^
t.m:7:3: note: scope created by @try block
@try {
^
There are a whole ton of fixme's for stuff to do, but I believe that this
is a monotonic improvement over what we had.
llvm-svn: 69437
lazy PCH deserialization. Propagate that argument wherever it needs to
be. No functionality change, except that I've tightened up a few PCH
tests in preparation.
llvm-svn: 69406
1. We had logic in sema to decide whether or not to emit the error
based on manually checking whether in a system header file.
2. we were allowing redefinitions of typedefs in class scope in C++
if in header file.
3. there was no way to force typedef redefinitions to be accepted
by the C compiler, which annoys me when stripping linemarkers out
of .i files.
The fix is to split the C++ class typedef redefinition path from the
C path, and change the C path to be a warning that normally maps to
error. This causes it to properly be ignored in system headers,
etc. and gives us a way to control it. Passing
-Wtypedef-redefinition now turns the error into a warning.
One behavior change is that we now diagnose cases where you redefine
a typedef in your .c file that was defined in a header file. This
seems like reasonable behavior, and the diagnostic now indicates that
it can be controlled with -Wtypedef-redefinition.
llvm-svn: 69391
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299
gen. issue for property in continuation class declared readwrite
but which did not generate the declaration for the setter. Fix also
removed a FIXME and resulted in code cleanup.
llvm-svn: 69200
caused by: <rdar://problem/6252084> [sema] jumps into Obj-C exception blocks should be disallowed.
Sema::RecursiveCalcLabelScopes() and Sema::RecursiveCalcJumpScopes() need to pop the ScopeStack within the statement iteration loop (was outside the loop).
Eli, please review (thanks).
llvm-svn: 69165
- Strip off extra parens when looking for casts.
- Change the location info to point at the cast (instead of the
assignment).
For example, on
int *b;
#define a ((void*) b)
void f0() {
a = 10;
}
we now emit:
/tmp/t.c:4:3: error: assignment to cast is illegal, lvalue casts are not supported
a = 10;
^ ~
/tmp/t.c:2:12: note: instantiated from:
#define a ((void*) b)
~^~~~~~~~~~
instead of:
/tmp/t.c:4:5: error: expression is not assignable
a = 10;
~ ^
llvm-svn: 69114
wrap-up (e.g., turning tentative definitions into definitions). Also,
very that, when we actually use the PCH file, we get the ride code
generation for tentative definitions and definitions that show up in
the PCH file.
llvm-svn: 69043
- Exposed quite a few Sema issues and a CodeGen crash.
- See FIXMEs in test case, and in SemaDecl.cpp (PR3983).
I'm skeptical that __private_extern__ should actually be a storage
class value. I think that __private_extern__ basically amounts to
extern A __attribute__((visibility("hidden")))
and would be better off handled (a) as that, or (b) with an extra bit
in the VarDecl.
llvm-svn: 69020
non-inline external definitions (and tentative definitions) that are
found at the top level. The corresponding declarations are stored in a
record in the PCH file, so that they can be provided to the
ASTConsumer (via HandleTopLevelDecl) when the PCH file is read.
llvm-svn: 69005
Since ObjC 2.0 class "extensions" have a null name, the diagnostic above is actually "correct". Nevertheless, it is confusing. Decided to remove the name entirely (from my perspective, it didn't add any value). Also simplified the text of the diagnostic a bit.
llvm-svn: 68967
struct xyz { int y; };
enum abc { ZZZ };
static xyz b;
abc c;
we used to produce:
t2.c:4:8: error: unknown type name 'xyz'
static xyz b;
^
t2.c:5:1: error: unknown type name 'abc'
abc c;
^
we now produce:
t2.c:4:8: error: use of tagged type 'xyz' without 'struct' tag
static xyz b;
^
struct
t2.c:5:1: error: use of tagged type 'abc' without 'enum' tag
abc c;
^
enum
GCC produces the normal:
t2.c:4: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘b’
t2.c:5: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘c’
rdar://6783347
llvm-svn: 68914
Implement the rvalue reference overload dance for returning local objects. Returning a local object first tries to find a move constructor now.
The error message when no move constructor is defined (or is not applicable) and the copy constructor is deleted is quite ugly, though.
llvm-svn: 68902
@property int x;
associate the location of X with the property decl, not the location
of the @. Also, pass this info along to the synthesized ParmVarDecls
so that redefinition and other diagnostics can use it. This eliminates
a fixme.
llvm-svn: 68880
that it is plumbed through Sema. On a file from growl, we used to emit:
t.mi:107059:1: warning: conflicting types for 'removePluginHandler:forPluginTypes:'
- (void) removePluginHandler:(id <GrowlPluginHandler>)handler forPluginTypes:(NSSet *)extensions {
^
t.mi:105280:1: note: previous definition is here
- (void) removePluginHandler:(id <NSObject>)handler forPluginTypes:(NSSet *)types;
^
now we produce:
t.mi:107059:55: warning: conflicting parameter types in implementation of 'removePluginHandler:forPluginTypes:': 'id<NSObject>' vs 'id<GrowlPluginHandler>'
- (void) removePluginHandler:(id <GrowlPluginHandler>)handler forPluginTypes:(NSSet *)extensions {
^
t.mi:105280:45: note: previous definition is here
- (void) removePluginHandler:(id <NSObject>)handler forPluginTypes:(NSSet *)types;
^
We still don't have proper loc info for properties, hence the FIXME.
rdar://6782494
llvm-svn: 68879
1) improve localizability by not passing english strings in.
2) improve location for arguments.
3) print the objc type being passed.
Before:
method-bad-param.m:15:1: error: Objective-C type cannot be passed by value
-(void) my_method:(foo) my_param
^
after:
method-bad-param.m:15:25: error: Objective-C interface type 'foo' cannot be passed by value
-(void) my_method:(foo) my_param
^
llvm-svn: 68872
buffer generated for the current translation unit. If they are
different, complain and then ignore the PCH file. This effectively
checks for all compilation options that somehow would affect
preprocessor state (-D, -U, -include, the dreaded -imacros, etc.).
When we do accept the PCH file, throw away the contents of the
predefines buffer rather than parsing them, since all of the results
of that parsing are already stored in the PCH file. This eliminates
the ugliness with the redefinition of __builtin_va_list, among other
things.
llvm-svn: 68838
clients of the analyzer to designate custom assertion routines as "noreturn"
functions from the analyzer's perspective but not the compiler's.
llvm-svn: 68746
de-serialization of abstract syntax trees.
PCH support serializes the contents of the abstract syntax tree (AST)
to a bitstream. When the PCH file is read, declarations are serialized
as-needed. For example, a declaration of a variable "x" will be
deserialized only when its VarDecl can be found by a client, e.g.,
based on name lookup for "x" or traversing the entire contents of the
owner of "x".
This commit provides the framework for serialization and (lazy)
deserialization, along with support for variable and typedef
declarations (along with several kinds of types). More
declarations/types, along with important auxiliary structures (source
manager, preprocessor, etc.), will follow.
llvm-svn: 68732
This allow us to document a simple migration path...change "Class <foo>" to "id <foo>".
This effects:
- <rdar://problem/6761939> TASK: File source change radars for "qualified Class" errors
- <rdar://problem/6761864> Protocol qualified Class is unsupported
llvm-svn: 68517
This will simplify clang adoption, and is probably better "etiquette" (since gcc has always accepted this idiom without warning). Once we are over the adoption hurdle, we can turn this into an error.
llvm-svn: 68468
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
- Finish up support for converting UTF8->UTF16 to support ObjC @"string" constants.
Remove warning from CheckObjCString.
As the FIXME in the test case indicates, I still have a bug to work out (apparently with \u handling).
llvm-svn: 68245
heuristics to determine when it's useful to desugar a type for display
to the user. Introduce two C++-specific heuristics:
- For a qualified type (like "foo::bar"), only produce a new
desugred type if desugaring the qualified type ("bar", in this
case) produces something interesting. For example, if "foo::bar"
refers to a class named "bar", don't desugar. However, if
"foo::bar" refers to a typedef of something else, desugar to that
something else. This gives some useful desugaring such as
"foo::bar (aka 'int')".
- Don't desugar class template specialization types like
"basic_string<char>" down to their underlying "class
basic_string<char, char_traits<char>, allocator<char>>, etc.";
it's better just to leave such types alone.
Update diagnostics.html with some discussion and examples of type
preservation in C++, showing qualified names and class template
specialization types.
llvm-svn: 68207
template template parameters and dependent template names. For
example, the oft-mentioned
typename MetaFun::template apply<T1, T2>::type
can now be instantiated, with the appropriate name lookup for "apply".
llvm-svn: 68128
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074
productions (except the already broken ObjC cases like @class X,Y;) in
the parser that can produce more than one Decl return a DeclGroup instead
of a Decl, etc.
This allows elimination of the Decl::NextDeclarator field, and exposes
various clients that should look at all decls in a group, but which were
only looking at one (such as the dumper, printer, etc). These have been
fixed.
Still TODO:
1) there are some FIXME's in the code about potentially using
DeclGroup for better location info.
2) ParseObjCAtDirectives should return a DeclGroup due to @class etc.
3) I'm not sure what is going on with StmtIterator.cpp, or if it can
be radically simplified now.
4) I put a truly horrible hack in ParseTemplate.cpp.
I plan to bring up #3/4 on the mailing list, but don't plan to tackle
#1/2 in the short term.
llvm-svn: 68002
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
LHS type and the computation result type; this encodes information into
the AST which is otherwise non-obvious. Fix Sema to always come up with the
right answer for both of these types. Fix IRGen and the analyzer to
account for these changes. This fixes PR2601. The approach is inspired
by PR2601 comment 2.
Note that this changes real *= complex in CodeGen from a silent
miscompilation to an explicit error.
I'm not really sure that the analyzer changes are correct, or how to
test them... someone more familiar with the analyzer should check those
changes.
llvm-svn: 67889