The new container is used to store atexit callbacks. This way, we avoid
the possibility of the destructor of the container itself getting added
as an at exit callback.
Reviewed By: abrachet
Differential Revision: https://reviews.llvm.org/D121350
operator-> is not a requirement for most iterators, so remove it. To
account for this change, the `common_iterator.operator->` test needs to
be refactored quite a bit -- improve test coverage while we're at it.
Differential Revision: https://reviews.llvm.org/D118400
We came to the conclusion that this doesn't matter for VSCode/Xcode
because they don't use the default event loop and that other clients
who might care should use the setting.
Differential revision: https://reviews.llvm.org/D120972
Previously, we aligned every cstring to 16 bytes as a temporary hack to
deal with https://github.com/llvm/llvm-project/issues/50135. However, it
was highly wasteful in terms of binary size.
To recap, in contrast to ELF, which puts strings that need different
alignments into different sections, `clang`'s Mach-O backend puts them
all in one section. Strings that need to be aligned have the .p2align
directive emitted before them, which simply translates into zero padding
in the object file. In other words, we have to infer the alignment of
the cstrings from their addresses.
We differ slightly from ld64 in how we've chosen to align these
cstrings. Both LLD and ld64 preserve the number of trailing zeros in
each cstring's address in the input object files. When deduplicating
identical cstrings, both linkers pick the cstring whose address has more
trailing zeros, and preserve the alignment of that address in the final
binary. However, ld64 goes a step further and also preserves the offset
of the cstring from the last section-aligned address. I.e. if a cstring
is at offset 18 in the input, with a section alignment of 16, then both
LLD and ld64 will ensure the final address is 2-byte aligned (since
`18 == 16 + 2`). But ld64 will also ensure that the final address is of
the form 16 * k + 2 for some k (which implies 2-byte alignment).
Note that ld64's heuristic means that a dedup'ed cstring's final address is
dependent on the order of the input object files. E.g. if in addition to the
cstring at offset 18 above, we have a duplicate one in another file with a
`.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
the cstring from the object file earlier on the command line (since both have
the same number of trailing zeros in their address). So the final cstring may
either be at some address `16 * k + 2` or at some address `2 * k`.
I've opted not to follow this behavior primarily for implementation
simplicity, and secondarily to save a few more bytes. It's not clear to me
that preserving the section alignment + offset is ever necessary, and there
are many cases that are clearly redundant. In particular, if an x86_64 object
file contains some strings that are accessed via SIMD instructions, then the
.cstring section in the object file will be 16-byte-aligned (since SIMD
requires its operand addresses to be 16-byte aligned). However, there will
typically also be other cstrings in the same file that aren't used via SIMD
and don't need this alignment. They will be emitted at some arbitrary address
`A`, but ld64 will treat them as being 16-byte aligned with an offset of
`16 % A`.
I have verified that the two repros in https://github.com/llvm/llvm-project/issues/50135
work well with the new alignment behavior.
Fixes https://github.com/llvm/llvm-project/issues/54036.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D121342
For AArch64 in some cases/some distributions ld uses 64K alignment of LOAD segments by default.
Reviewed By: yota9, maksfb
Differential Revision: https://reviews.llvm.org/D119267
When seeing the extra space in the log, it wasn't clear if there was a missing
printf argument. Removing the extra space removes the potential confusion.
This doesn't appear to be needed any more. I did some inspecting
of the gcc torture suite and SPEC2006 with this removed and didn't
find any meaningful changes.
I think we're more aggressive about forming ADDIW now using
sign_extend_inreg during type legalization and hasAllWUsers in isel.
This probably helps catch the cases this helped with before.
This workaround is the source of an awkwared Process->Platform
dependency. While this could be solved in various ways (the only thing
we really use is the plugin name), it may be better to just remove it --
the workaround was added 10 years ago (43c555dfc), and the affected
debugservers were "old" even then, so hopefully they are not in use
anymore.
Differential Revision: https://reviews.llvm.org/D121305
This patch lowers pointer component part of derived types to
FIR.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D121383
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D121384
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch ensures that lldb can automatically load a scripted process
blueprint from a dSYM bundle and launch a scripted process with it.
rdar://74502750
Differential Revision: https://reviews.llvm.org/D121316
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch makes the crashlog interactive mode show the scripted process
status with the crashed scripted thread backtrace after launching it.
rdar://89634338
Differential Revision: https://reviews.llvm.org/D121038
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch lowers general forall statements. The forall
are lowered to nested loops.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D121385
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D121386
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Prior to this change, we would make check-all depend on check-runtimes
which is a target that runs tests in the runtimes build. This means that
the runtimes tests are going to run prior to other test suites in
check-all, and if one of them fails, we won't run the other test suites
at all.
To address this issue, we instead collect the list of test suites and
their dependencies from the runtimes subbuild, and include them in
check-all, so a failure of runtimes test suite doesn't prevent other
test suites from being executed.
This addresses https://github.com/llvm/llvm-project/issues/54154.
Differential Revision: https://reviews.llvm.org/D121276
The HWEncoding for these 64 bit registers should be the same as as the
encoding for the previously defined low halves of the registers. So
reuse that value instead of repeating the assignment. NFC.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D121391
This helps us form vfnmsub, vfnmadd, and vfmusb from masked VP
intrinsics.
I've used "srcvalue" for the mask parameter in the fneg nodes. We
can't match "V0" because that doesn't ensure the mask the is the same.
Instead it matches two different nodes and generates two copies to
V0 of those separate values.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D120287
X (any pred) -X --> X (any pred) 0.0
This works with all FP values and preserves FMF.
Alive2 examples:
https://alive2.llvm.org/ce/z/dj6jhp
This can also create one of the patterns that we match as "fabs"
as shown in one of the test diffs.
This patch introduces two new experimental IR intrinsics and SDAG nodes
to represent vector strided loads and stores.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D114884
This patch lowers where statement to FIR.
The where statement is lowered to a conbination of
loops and if conditions.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121385
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add operations abs, ceil, floor, and neg to the C++ API and Python API.
Add test cases.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D121339
This patch lowers basic derived type to FIR.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121383
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch remove `spaceKind` from PresburgerSpace, making PresburgerSpace only
a space supporting relations.
Sets are still implemented in the same way, i.e. with a zero domain but instead
the asserts to check if the space is still set are added to users of
PresburgerSpace which treat it as a Set space.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121357
The enableObjectCache option was added in
https://reviews.llvm.org/rG06e8101034e, defaulting to false. However,
the init code added there got its logic reversed
(cache(enableObjectCache ? nullptr : new SimpleObjectCache()), which was
fixed in https://reviews.llvm.org/rGd1186fcb04 by setting the default to
true, thereby preserving the existing behavior even if it was
unintentional.
Default now the object cache to false as it was originally intended.
While at it, mention in enableObjectCache's documentation how the
cache can be dumped.
Reviewed-by: mehdi_amini
Differential Revision: https://reviews.llvm.org/D121291
The false positive fixed by commit f831d6fc80
("tsan: fix false positive during fd close") still happens episodically
on the added more stressful test which does just open/close.
I don't have a coherent explanation as to what exactly happens
but the fix fixes the false positive on this test as well.
The issue may be related to lost writes during asynchronous MADV_DONTNEED.
I've debugged similar unexplainable false positive related to freed and
reused memory and at the time the only possible explanation I found is that
an asynchronous MADV_DONTNEED may lead to lost writes. That's why commit
302ec7b9bc ("tsan: add memory_limit_mb flag") added StopTheWorld around
the memory flush, but unfortunately the commit does not capture these findings.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D121363
This patch moves the testcases from
`mlir/test/Target/LLVMIR/openmp-llvm-bad-schedule-modifier.mlir` to
`mlir/test/Dialect/OpenMP/invalid.mlir` as they test the verifier
(not the translation to LLVM IR).
Reviewed By: NimishMishra
Differential Revision: https://reviews.llvm.org/D120877
On Windows (at least), cmake ignores Python3_EXECUTABLE unless the
'Interpreter' component is being found. If the user is specifying a
different version than the latest installed (say, 3.8 vs 3.9) with the
Python3_EXECUTABLE, cmake was using a combination of the newest version
and the desired version. Mitigated by adding 'Interpreter' in the first
invocation like the second one.
This reverts commit 9397bdc67e.
This optimization is likely to surprise programmers as seen
in post-commit comments, so we should add a clang warning
first (that is proposed in D121306).
If there are no ctors, then this can have an arbirary zero-sized
value. The current code checks for null, but it could also be
undef or poison.
Replacing the specific null check with a check for
non-ConstantArray.
A TBL instruction will use zero for any out of range values. We can use
this in GenerateTBL to help turn a TBL2 into a TBL1, avoiding the need
to materialise the zero.
Differential Revision: https://reviews.llvm.org/D121139
Add initial support for darwin-aarch64 (macOS M1).
Some differences compared to linux-aarch64:
- `math.h` defined `math_errhandling` by the compiler builtin `__math_errhandling()` but Apple Clang 13.0.0 on M1 does not support `__math_errhandling()` builtin as a macro function or a constexpr function.
- `math.h` defines `UNDERFLOW` and `OVERFLOW` macros.
- Besides 5 usual floating point exceptions: `FE_INEXACT`, `FE_UNDERFLOW`, `FE_OVERFLOW`, `FE_DIVBYZERO`, and `FE_INVALID`, `fenv.h` also has another floating point exception: `FE_FLUSHTOZERO`. The corresponding trap for `FE_FLUSHTOZERO` in the control register is at the different location compared to the status register.
- `FE_FLUSHTOZERO` exception flag cannot be raised with the default CPU floating point operation mode.
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D120914
Now that we've branched for the LLVM 14 release, our support window
moves to clang-13 and clang-14. Similarly, AppleClang 13 has been
released for some time now, so that should be the oldest compiler
we support, per our policy.
A possible follow-up would be to remove _LIBCPP_HAS_NO_CONCEPTS, since
I don't think we support any compiler that doesn't support concepts
anymore.
Differential Revision: https://reviews.llvm.org/D118831