Commit Graph

129 Commits

Author SHA1 Message Date
Nirav Dave d839749ae8 [DAG] Improve Aliasing of operations to static alloca
Re-recommiting after landing DAG extension-crash fix.

Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.

Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 308350
2017-07-18 20:06:24 +00:00
Chandler Carruth a15e080b05 Revert r308025 due to uncovering a crash in SelectionDAG. This is filed
with a minimal test case in http://llvm.org/PR33833.

Original commit message:
  Improve Aliasing of operations to static alloca

llvm-svn: 308271
2017-07-18 07:53:47 +00:00
Nirav Dave a8f63af9d1 Improve Aliasing of operations to static alloca
Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.

Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 308025
2017-07-14 13:56:21 +00:00
Matthias Braun b38736706e Revert "[DAG] Improve Aliasing of operations to static alloca"
Reverting as it breaks tramp3d-v4 in the llvm test-suite. I added some
comments to https://reviews.llvm.org/D33345 about it.

This reverts commit r307546.

llvm-svn: 307589
2017-07-10 20:51:30 +00:00
Nirav Dave 163e1ad9dc [DAG] Improve Aliasing of operations to static alloca
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 307546
2017-07-10 15:39:41 +00:00
Nirav Dave b320ef9fab Rewrite areNonVolatileConsecutiveLoads to use BaseIndexOffset
Relanding after rewriting undef.ll test to avoid host-dependant
endianness.

As discussed in D34087, rewrite areNonVolatileConsecutiveLoads using
generic checks. Also, propagate missing local handling from there to
BaseIndexOffset checks.

Tests of note:

  * test/CodeGen/X86/build-vector* - Improved.
  * test/CodeGen/BPF/undef.ll - Improved store alignment allows an
    additional store merge

  * test/CodeGen/X86/clear_upper_vector_element_bits.ll - This is a
    case we already do not handle well. Here, the DAG is improved, but
    scheduling causes a code size degradation.

Reviewers: RKSimon, craig.topper, spatel, andreadb, filcab

Subscribers: nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D34472

llvm-svn: 307114
2017-07-05 01:21:23 +00:00
Nirav Dave a35938d827 Revert "[DAG] Rewrite areNonVolatileConsecutiveLoads to use BaseIndexOffset"
This reverts commit r306819 which appears be exposing underlying
issues in a stage1 ppc64be build

llvm-svn: 306820
2017-06-30 12:56:02 +00:00
Nirav Dave c5a48c1ee8 [DAG] Rewrite areNonVolatileConsecutiveLoads to use BaseIndexOffset
As discussed in D34087, rewrite areNonVolatileConsecutiveLoads using
generic checks. Also, propagate missing local handling from there to
BaseIndexOffset checks.

Tests of note:

  * test/CodeGen/X86/build-vector* - Improved.
  * test/CodeGen/BPF/undef.ll - Improved store alignment allows an
    additional store merge

  * test/CodeGen/X86/clear_upper_vector_element_bits.ll - This is a
    case we already do not handle well. Here, the DAG is improved, but
    scheduling causes a code size degradation.

Reviewers: RKSimon, craig.topper, spatel, andreadb, filcab

Subscribers: nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D34472

llvm-svn: 306819
2017-06-30 12:23:41 +00:00
Vadzim Dambrouski 9e0d3878fb [MSP430] Fix data layout string.
Summary:
Without this patch some types have incorrect size and/or alignment
according to the MSP430 EABI.

Reviewers: asl, awygle

Reviewed By: asl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D34561

llvm-svn: 306159
2017-06-23 21:11:45 +00:00
Vadzim Dambrouski b07351f4f8 [MSP430] Fix PR33050: Don't use ADD16ri to lower FrameIndex.
Use ADDframe pseudo instruction instead.
This will fix machine verifier error, and will help to fix PR32146.

Differential Revision: https://reviews.llvm.org/D33452

llvm-svn: 303758
2017-05-24 15:08:30 +00:00
Vadzim Dambrouski 49dd6e68c2 [MSP430] Add subtarget features for hardware multiplier.
Also add more processors to make -mcpu option behave similar to gcc.

Differential Revision: https://reviews.llvm.org/D33335

llvm-svn: 303695
2017-05-23 21:49:42 +00:00
Nirav Dave da8f221273 Elide stores which are overwritten without being observed.
Summary:
In SelectionDAG, when a store is immediately chained to another store
to the same address, elide the first store as it has no observable
effects. This is causes small improvements dealing with intrinsics
lowered to stores.

Test notes:

* Many testcases overwrite store addresses multiple times and needed
  minor changes, mainly making stores volatile to prevent the
  optimization from optimizing the test away.

* Many X86 test cases optimized out instructions associated with
  associated with va_start.

* Note that test_splat in CodeGen/AArch64/misched-stp.ll no longer has
  dependencies to check and can probably be removed and potentially
  replaced with another test.

Reviewers: rnk, john.brawn

Subscribers: aemerson, rengolin, qcolombet, jyknight, nemanjai, nhaehnle, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33206

llvm-svn: 303198
2017-05-16 19:43:56 +00:00
Vadzim Dambrouski 38e30197c3 [MSP430] Generate EABI-compliant libcalls
Updates the MSP430 target to generate EABI-compatible libcall names.
As a byproduct, adjusts the hardware multiplier options available in
the MSP430 target, adds support for promotion of the ISD::MUL operation
for 8-bit integers, and correctly marks R11 as used by call instructions.

Patch by Andrew Wygle.

Differential Revision: https://reviews.llvm.org/D32676

llvm-svn: 302820
2017-05-11 19:56:14 +00:00
Vadzim Dambrouski d91fb8c367 [MSP430] Fix PR32769: Select8 and Select16 need to have SR in Uses.
If Select pseudo instruction doesn't have use SR, then
CMP instructions are being marked as dead and later can be
removed by MachineCSE pass. This leads to incorrect code
generation.

Differential Revision: https://reviews.llvm.org/D32473

llvm-svn: 301372
2017-04-26 00:33:59 +00:00
Nirav Dave 54e22f33d9 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting with compiler time improvements

    Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.

    * Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 297695
2017-03-14 00:34:14 +00:00
Chandler Carruth ce52b80744 [SDAG] Revert r296476 (and r296486, r296668, r296690).
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.

llvm-svn: 296862
2017-03-03 10:02:25 +00:00
Vadzim Dambrouski eafb805506 [MSP430] Add SRet support to MSP430 target
This patch adds support for struct return values to the MSP430
target backend. It also reverses the order of argument and return
registers in the calling convention to bring it into closer
alignment with the published EABI from TI.

Patch by Andrew Wygle (awygle).

Differential Revision: https://reviews.llvm.org/D29069

llvm-svn: 296807
2017-03-02 20:25:10 +00:00
Nirav Dave f830dec3f2 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.

    * Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 296476
2017-02-28 14:24:15 +00:00
Michael Kuperstein 13bf8a2684 [CGP] Split some critical edges coming out of indirect branches
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.

This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.

Differential Revision: https://reviews.llvm.org/D29916

llvm-svn: 296416
2017-02-28 00:11:34 +00:00
Daniel Jasper 3ca4525612 Revert "[CGP] Split some critical edges coming out of indirect branches"
This reverts commit r296149 as it leads to crashes when compiling for
PPC.

llvm-svn: 296295
2017-02-26 11:09:12 +00:00
Nirav Dave 73cd0194cf Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r296252 until 256-bit operations are more efficiently generated in X86.

llvm-svn: 296279
2017-02-26 01:27:32 +00:00
Nirav Dave beabf456df In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.

    * Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 296252
2017-02-25 11:43:58 +00:00
Michael Kuperstein 46b131e3f8 [CGP] Split some critical edges coming out of indirect branches
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.

This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.

Differential Revision: https://reviews.llvm.org/D29916

llvm-svn: 296149
2017-02-24 18:41:32 +00:00
Michael Kuperstein 581c9f4b20 Revert r269060 to pacify bots.
llvm-svn: 296064
2017-02-24 01:22:19 +00:00
Michael Kuperstein 12e79d5002 [CGP] Split some critical edges coming out of indirect branches
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.

This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.

Differential Revision: https://reviews.llvm.org/D29916

llvm-svn: 296060
2017-02-24 00:56:21 +00:00
Nirav Dave 93f9d5ce04 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293893 which is miscompiling lua on ARM and
bootstrapping for x86-windows.

llvm-svn: 293915
2017-02-02 18:24:55 +00:00
Nirav Dave 4442667fc5 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixing X86 inc/dec chain bug.

    * Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 293893
2017-02-02 14:39:42 +00:00
Nirav Dave d32a421f75 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293184 which is failing in LTO builds

llvm-svn: 293188
2017-01-26 16:46:13 +00:00
Nirav Dave de6516c466 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
* Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 293184
2017-01-26 16:02:24 +00:00
Nirav Dave f5bf03c7ef Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
Reverting due to ARM MCJIT and MIPS LLD error.

This reverts commit r289659.

llvm-svn: 289667
2016-12-14 16:43:44 +00:00
Nirav Dave 8527ab0ad2 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after fixing after removing load-store factoring through
token factors in favor of improved token factor operand pruning

Simplify Consecutive Merge Store Candidate Search

Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.

Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).

Additional Minor Changes:

   1. Finishes removing unused AliasLoad code
   2. Unifies the the chain aggregation in the merged stores across
      code paths
   3. Re-add the Store node to the worklist after calling
      SimplifyDemandedBits.
   4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
      arbitrary, but seemed sufficient to not cause regressions in
      tests.

This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.

Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations

Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -

      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and
      merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

llvm-svn: 289659
2016-12-14 15:44:26 +00:00
Nirav Dave bedb5d906c Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r289221 which appears to be triggering an assertion

llvm-svn: 289226
2016-12-09 17:18:24 +00:00
Nirav Dave fd51ff4fd8 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after fixing overly aggressive load-store forwarding optimization.

Simplify Consecutive Merge Store Candidate Search

Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.

Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).

Additional Minor Changes:

   1. Finishes removing unused AliasLoad code
   2. Unifies the the chain aggregation in the merged stores across
      code paths
   3. Re-add the Store node to the worklist after calling
      SimplifyDemandedBits.
   4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
      arbitrary, but seemed sufficient to not cause regressions in
      tests.

This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.

Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations

Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -

      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and
      merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

llvm-svn: 289221
2016-12-09 16:15:12 +00:00
Eli Friedman 0a76e3241f [CodeGen] Fix result type for SMULO/UMULO legalization
On some platforms (like MSP430) the second element of the result
structure for SMULO/UMULO may have a shorter type than the one
returned by SetCC. We need to truncate it to the right type, or
else some incorrect code may be generated later on.

This fixes issue https://github.com/rust-lang/rust/issues/37829

Patch by Vadzim Dambrouski!

Differential Revision: https://reviews.llvm.org/D27154

llvm-svn: 288857
2016-12-06 22:49:36 +00:00
Anton Korobeynikov 243a4700ce Fix PR27500: on MSP430 the branch destination offset is measured in words, not bytes.
Summary: In addition, the branch instructions will have proper BB destinations, not offsets, like before.

Reviewers: asl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D23718

llvm-svn: 286252
2016-11-08 17:19:59 +00:00
Nirav Dave a81682aad4 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r284151 which appears to be triggering a LTO
failures on Hexagon

llvm-svn: 284157
2016-10-13 20:23:25 +00:00
Nirav Dave 4b36957243 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after upstream changes.

   Simplify Consecutive Merge Store Candidate Search

   Now that address aliasing is much less conservative, push through
   simplified store merging search which only checks for parallel stores
   through the chain subgraph. This is cleaner as the separation of
   non-interfering loads/stores from the store-merging logic.

   Whem merging stores, search up the chain through a single load, and
   finds all possible stores by looking down from through a load and a
   TokenFactor to all stores visited. This improves the quality of the
   output SelectionDAG and generally the output CodeGen (with some
   exceptions).

   Additional Minor Changes:

       1. Finishes removing unused AliasLoad code
       2. Unifies the the chain aggregation in the merged stores across
       code paths
       3. Re-add the Store node to the worklist after calling
       SimplifyDemandedBits.
       4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
       arbitrary, but seemed sufficient to not cause regressions in
       tests.

   This finishes the change Matt Arsenault started in r246307 and
   jyknight's original patch.

   Many tests required some changes as memory operations are now
   reorderable. Some tests relying on the order were changed to use
   volatile memory operations

   Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -

      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and
      merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

    CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
      This test appears to work but no longer exhibits the spill behavior.

Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

llvm-svn: 284151
2016-10-13 19:20:16 +00:00
Hal Finkel fcd2421667 [SelectionDAGBuilder] Support llvm.flt.rounds on targets where i32 is not legal
Add integer expansion for FLT_ROUNDS_ for targets where i32 is not a legal
type.

Patch by Edward Jones, thanks!

Differential Revision: https://reviews.llvm.org/D24459

llvm-svn: 283797
2016-10-10 20:45:15 +00:00
Nirav Dave e524f50882 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r282600 due to test failues with MCJIT

llvm-svn: 282604
2016-09-28 16:37:50 +00:00
Nirav Dave e17e055b75 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Simplify Consecutive Merge Store Candidate Search

  Now that address aliasing is much less conservative, push through
  simplified store merging search which only checks for parallel stores
  through the chain subgraph. This is cleaner as the separation of
  non-interfering loads/stores from the store-merging logic.

  Whem merging stores, search up the chain through a single load, and
  finds all possible stores by looking down from through a load and a
  TokenFactor to all stores visited. This improves the quality of the
  output SelectionDAG and generally the output CodeGen (with some
  exceptions).

  Additional Minor Changes:

    1. Finishes removing unused AliasLoad code
    2. Unifies the the chain aggregation in the merged stores across
       code paths
    3. Re-add the Store node to the worklist after calling
       SimplifyDemandedBits.
    4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
       arbitrary, but seemed sufficient to not cause regressions in
       tests.

  This finishes the change Matt Arsenault started in r246307 and
  jyknight's original patch.

  Many tests required some changes as memory operations are now
  reorderable. Some tests relying on the order were changed to use
  volatile memory operations

  Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -
      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

    CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
      This test appears to work but no longer exhibits the spill
      behavior.

Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

llvm-svn: 282600
2016-09-28 15:50:43 +00:00
Anton Korobeynikov b38195c1a8 Revert r279242 - it's failing the tests
llvm-svn: 279247
2016-08-19 14:18:34 +00:00
Anton Korobeynikov 2aae31a945 Fix PR27500: on MSP430 the branch destination offset is measured in words, not bytes.
In addition, the branch instructions will have proper BB destinations, not offsets, like before.

Patch by Vadzim Dambrouski!

Differential Revision: https://reviews.llvm.org/D20162

llvm-svn: 279242
2016-08-19 14:07:10 +00:00
Anton Korobeynikov 064dbac212 `MSP430InstrInfo::loadRegFromStackSlot` forgets to set register def.
Summary:
For instance, compiling the below results in a panic:

```
llc: ../lib/CodeGen/InlineSpiller.cpp:1140: bool (anonymous namespace)::InlineSpiller::foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned int> >, llvm::MachineInstr *): Assertion `MO->isDead() && "Cannot fold physreg def"' failed.
#0 0x00007f50fbcf353e llvm::sys::PrintStackTrace(llvm::raw_ostream&) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:321:15
#1 0x00007f50fbcf3929 PrintStackTraceSignalHandler(void*) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:380:1
#2 0x00007f50fbcf22a3 llvm::sys::RunSignalHandlers() /home/h/3rd/llvm/build/../lib/Support/Signals.cpp:45:5
#3 0x00007f50fbcf3bb4 SignalHandler(int) /home/h/3rd/llvm/build/../lib/Support/Unix/Signals.inc:210:1
#4 0x00007f50fa87a180 (/lib/x86_64-linux-gnu/libc.so.6+0x35180)
#5 0x00007f50fa87a107 gsignal (/lib/x86_64-linux-gnu/libc.so.6+0x35107)
#6 0x00007f50fa87b4e8 abort (/lib/x86_64-linux-gnu/libc.so.6+0x364e8)
#7 0x00007f50fa873226 (/lib/x86_64-linux-gnu/libc.so.6+0x2e226)
#8 0x00007f50fa8732d2 (/lib/x86_64-linux-gnu/libc.so.6+0x2e2d2)
#9 0x00007f50fddd9287 (anonymous namespace)::InlineSpiller::foldMemoryOperand(llvm::ArrayRef<std::pair<llvm::MachineInstr*, unsigned int> >, llvm::MachineInstr*) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1141:21
#10 0x00007f50fddd9ee9 (anonymous namespace)::InlineSpiller::spillAroundUses(unsigned int) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1286:9
#11 0x00007f50fddd388b (anonymous namespace)::InlineSpiller::spillAll() /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1338:21
#12 0x00007f50fddd221d (anonymous namespace)::InlineSpiller::spill(llvm::LiveRangeEdit&) /home/h/3rd/llvm/build/../lib/CodeGen/InlineSpiller.cpp:1391:3
#13 0x00007f50fdfd921b (anonymous namespace)::RAGreedy::selectOrSplitImpl(llvm::LiveInterval&, llvm::SmallVectorImpl<unsigned int>&, llvm::SmallSet<unsigned int, 16u, std::less<unsigned int> >&, unsigned int) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2555:5
#14 0x00007f50fdfd647b (anonymous namespace)::RAGreedy::selectOrSplit(llvm::LiveInterval&, llvm::SmallVectorImpl<unsigned int>&) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2221:12
#15 0x00007f50fdfc89f9 llvm::RegAllocBase::allocatePhysRegs() /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocBase.cpp:110:14
#16 0x00007f50fdfd6337 (anonymous namespace)::RAGreedy::runOnMachineFunction(llvm::MachineFunction&) /home/h/3rd/llvm/build/../lib/CodeGen/RegAllocGreedy.cpp:2611:3
#17 0x00007f50fded33ee llvm::MachineFunctionPass::runOnFunction(llvm::Function&) /home/h/3rd/llvm/build/../lib/CodeGen/MachineFunctionPass.cpp:43:3
#18 0x00007f50fd6cdc6f llvm::FPPassManager::runOnFunction(llvm::Function&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1550:23
#19 0x00007f50fd6cdf85 llvm::FPPassManager::runOnModule(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1571:16
#20 0x00007f50fd6ce71a (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1627:23
#21 0x00007f50fd6ce246 llvm::legacy::PassManagerImpl::run(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1730:16
#22 0x00007f50fd6cec31 llvm::legacy::PassManager::run(llvm::Module&) /home/h/3rd/llvm/build/../lib/IR/LegacyPassManager.cpp:1761:3
#23 0x0000000000415bdc compileModule(char**, llvm::LLVMContext&) /home/h/3rd/llvm/build/../tools/llc/llc.cpp:405:5
#24 0x0000000000414571 main /home/h/3rd/llvm/build/../tools/llc/llc.cpp:211:13
#25 0x00007f50fa866b45 __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b45)
#26 0x0000000000414296 _start (/home/h/3rd/llvm/build/bin/llc+0x414296)
Stack dump:
0.	Program arguments: ./bin/llc -mtriple msp430 loadstore.ll 
1.	Running pass 'Function Pass Manager' on module 'loadstore.ll'.
2.	Running pass 'Greedy Register Allocator' on function '@inc'
```

Original IR:

```llvm
%struct.VeryLarge = type { i8, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32 }

; Function Attrs: norecurse nounwind
define void @inc(%struct.VeryLarge* noalias nocapture sret %agg.result, %struct.VeryLarge* byval align 1 %s) #0 {
entry:
  %p0 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 0
  %0 = load i8, i8* %p0, align 1, !tbaa !1
  %p1 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 1
  %1 = load i32, i32* %p1, align 1, !tbaa !6
  %p2 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 2
  %2 = load i32, i32* %p2, align 1, !tbaa !7
  %p3 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 3
  %3 = load i32, i32* %p3, align 1, !tbaa !8
  %p4 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 4
  %4 = load i32, i32* %p4, align 1, !tbaa !9
  %p5 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 5
  %5 = load i32, i32* %p5, align 1, !tbaa !10
  %p6 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 6
  %6 = load i32, i32* %p6, align 1, !tbaa !11
  %p7 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 7
  %7 = load i32, i32* %p7, align 1, !tbaa !12
  %p8 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 8
  %8 = load i32, i32* %p8, align 1, !tbaa !13
  %p9 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 9
  %9 = load i32, i32* %p9, align 1, !tbaa !14
  %p10 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 10
  %10 = load i32, i32* %p10, align 1, !tbaa !15
  %p11 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 11
  %11 = load i32, i32* %p11, align 1, !tbaa !16
  %p12 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 12
  %12 = load i32, i32* %p12, align 1, !tbaa !17
  %p13 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 13
  %13 = load i32, i32* %p13, align 1, !tbaa !18
  %p14 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 14
  %14 = load i32, i32* %p14, align 1, !tbaa !19
  %p15 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 15
  %15 = load i32, i32* %p15, align 1, !tbaa !20
  %p16 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 16
  %16 = load i32, i32* %p16, align 1, !tbaa !21
  %p17 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 17
  %17 = load i32, i32* %p17, align 1, !tbaa !22
  %p18 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 18
  %18 = load i32, i32* %p18, align 1, !tbaa !23
  %p19 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 19
  %19 = load i32, i32* %p19, align 1, !tbaa !24
  %p20 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 20
  %20 = load i32, i32* %p20, align 1, !tbaa !25
  %p21 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 21
  %21 = load i32, i32* %p21, align 1, !tbaa !26
  %p22 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 22
  %22 = load i32, i32* %p22, align 1, !tbaa !27
  %p23 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 23
  %23 = load i32, i32* %p23, align 1, !tbaa !28
  %p24 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 24
  %24 = load i32, i32* %p24, align 1, !tbaa !29
  %p25 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 25
  %25 = load i32, i32* %p25, align 1, !tbaa !30
  %p26 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 26
  %26 = load i32, i32* %p26, align 1, !tbaa !31
  %p27 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 27
  %27 = load i32, i32* %p27, align 1, !tbaa !32
  %p28 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 28
  %28 = load i32, i32* %p28, align 1, !tbaa !33
  %p29 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 29
  %29 = load i32, i32* %p29, align 1, !tbaa !34
  %p30 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 30
  %30 = load i32, i32* %p30, align 1, !tbaa !35
  %p31 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 31
  %31 = load i32, i32* %p31, align 1, !tbaa !36
  %p32 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %s, i32 0, i32 32
  %32 = load i32, i32* %p32, align 1, !tbaa !37
  %add = add i8 %0, 1
  store i8 %add, i8* %p0, align 1, !tbaa !1
  %add2 = add i32 %1, 2
  store i32 %add2, i32* %p1, align 1, !tbaa !6
  %add3 = add i32 %2, 3
  store i32 %add3, i32* %p2, align 1, !tbaa !7
  %add4 = add i32 %3, 4
  store i32 %add4, i32* %p3, align 1, !tbaa !8
  %add5 = add i32 %4, 5
  store i32 %add5, i32* %p4, align 1, !tbaa !9
  %add6 = add i32 %5, 6
  store i32 %add6, i32* %p5, align 1, !tbaa !10
  %add7 = add i32 %6, 7
  store i32 %add7, i32* %p6, align 1, !tbaa !11
  %add8 = add i32 %7, 8
  store i32 %add8, i32* %p7, align 1, !tbaa !12
  %add9 = add i32 %8, 9
  store i32 %add9, i32* %p8, align 1, !tbaa !13
  %add10 = add i32 %9, 10
  store i32 %add10, i32* %p9, align 1, !tbaa !14
  %add11 = add i32 %10, 11
  store i32 %add11, i32* %p10, align 1, !tbaa !15
  %add12 = add i32 %11, 12
  store i32 %add12, i32* %p11, align 1, !tbaa !16
  %add13 = add i32 %12, 13
  store i32 %add13, i32* %p12, align 1, !tbaa !17
  %add14 = add i32 %13, 14
  store i32 %add14, i32* %p13, align 1, !tbaa !18
  %add15 = add i32 %14, 15
  store i32 %add15, i32* %p14, align 1, !tbaa !19
  %add16 = add i32 %15, 16
  store i32 %add16, i32* %p15, align 1, !tbaa !20
  %add17 = add i32 %16, 17
  store i32 %add17, i32* %p16, align 1, !tbaa !21
  %add18 = add i32 %17, 18
  store i32 %add18, i32* %p17, align 1, !tbaa !22
  %add19 = add i32 %18, 19
  store i32 %add19, i32* %p18, align 1, !tbaa !23
  %add20 = add i32 %19, 20
  store i32 %add20, i32* %p19, align 1, !tbaa !24
  %add21 = add i32 %20, 21
  store i32 %add21, i32* %p20, align 1, !tbaa !25
  %add22 = add i32 %21, 22
  store i32 %add22, i32* %p21, align 1, !tbaa !26
  %add23 = add i32 %22, 23
  store i32 %add23, i32* %p22, align 1, !tbaa !27
  %add24 = add i32 %23, 24
  store i32 %add24, i32* %p23, align 1, !tbaa !28
  %add25 = add i32 %24, 25
  store i32 %add25, i32* %p24, align 1, !tbaa !29
  %add26 = add i32 %25, 26
  store i32 %add26, i32* %p25, align 1, !tbaa !30
  %add27 = add i32 %26, 27
  store i32 %add27, i32* %p26, align 1, !tbaa !31
  %add28 = add i32 %27, 28
  store i32 %add28, i32* %p27, align 1, !tbaa !32
  %add29 = add i32 %28, 29
  store i32 %add29, i32* %p28, align 1, !tbaa !33
  %add30 = add i32 %29, 30
  store i32 %add30, i32* %p29, align 1, !tbaa !34
  %add31 = add i32 %30, 31
  store i32 %add31, i32* %p30, align 1, !tbaa !35
  %add32 = add i32 %31, 32
  store i32 %add32, i32* %p31, align 1, !tbaa !36
  %add33 = add i32 %32, 33
  store i32 %add33, i32* %p32, align 1, !tbaa !37
  %33 = getelementptr inbounds %struct.VeryLarge, %struct.VeryLarge* %agg.result, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %33, i8* %p0, i32 129, i32 1, i1 false), !tbaa.struct !38
  ret void
}

; Function Attrs: argmemonly nounwind
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture readonly, i32, i32, i1) #1

attributes #0 = { norecurse nounwind "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { argmemonly nounwind }

!llvm.ident = !{!0}

!0 = !{!"clang version 3.8.0 (git://github.com/llvm-mirror/clang 40ef2b7531472c41212c4719a9294aeb7bddebbc) (git://github.com/llvm-mirror/llvm c601eaf55606dfb9ad372b514b77aa00d1409be1)"}
!1 = !{!2, !3, i64 0}
!2 = !{!"", !3, i64 0, !5, i64 1, !5, i64 5, !5, i64 9, !5, i64 13, !5, i64 17, !5, i64 21, !5, i64 25, !5, i64 29, !5, i64 33, !5, i64 37, !5, i64 41, !5, i64 45, !5, i64 49, !5, i64 53, !5, i64 57, !5, i64 61, !5, i64 65, !5, i64 69, !5, i64 73, !5, i64 77, !5, i64 81, !5, i64 85, !5, i64 89, !5, i64 93, !5, i64 97, !5, i64 101, !5, i64 105, !5, i64 109, !5, i64 113, !5, i64 117, !5, i64 121, !5, i64 125}
!3 = !{!"omnipotent char", !4, i64 0}
!4 = !{!"Simple C/C++ TBAA"}
!5 = !{!"int", !3, i64 0}
!6 = !{!2, !5, i64 1}
!7 = !{!2, !5, i64 5}
!8 = !{!2, !5, i64 9}
!9 = !{!2, !5, i64 13}
!10 = !{!2, !5, i64 17}
!11 = !{!2, !5, i64 21}
!12 = !{!2, !5, i64 25}
!13 = !{!2, !5, i64 29}
!14 = !{!2, !5, i64 33}
!15 = !{!2, !5, i64 37}
!16 = !{!2, !5, i64 41}
!17 = !{!2, !5, i64 45}
!18 = !{!2, !5, i64 49}
!19 = !{!2, !5, i64 53}
!20 = !{!2, !5, i64 57}
!21 = !{!2, !5, i64 61}
!22 = !{!2, !5, i64 65}
!23 = !{!2, !5, i64 69}
!24 = !{!2, !5, i64 73}
!25 = !{!2, !5, i64 77}
!26 = !{!2, !5, i64 81}
!27 = !{!2, !5, i64 85}
!28 = !{!2, !5, i64 89}
!29 = !{!2, !5, i64 93}
!30 = !{!2, !5, i64 97}
!31 = !{!2, !5, i64 101}
!32 = !{!2, !5, i64 105}
!33 = !{!2, !5, i64 109}
!34 = !{!2, !5, i64 113}
!35 = !{!2, !5, i64 117}
!36 = !{!2, !5, i64 121}
!37 = !{!2, !5, i64 125}
!38 = !{i64 0, i64 1, !39, i64 1, i64 4, !40, i64 5, i64 4, !40, i64 9, i64 4, !40, i64 13, i64 4, !40, i64 17, i64 4, !40, i64 21, i64 4, !40, i64 25, i64 4, !40, i64 29, i64 4, !40, i64 33, i64 4, !40, i64 37, i64 4, !40, i64 41, i64 4, !40, i64 45, i64 4, !40, i64 49, i64 4, !40, i64 53, i64 4, !40, i64 57, i64 4, !40, i64 61, i64 4, !40, i64 65, i64 4, !40, i64 69, i64 4, !40, i64 73, i64 4, !40, i64 77, i64 4, !40, i64 81, i64 4, !40, i64 85, i64 4, !40, i64 89, i64 4, !40, i64 93, i64 4, !40, i64 97, i64 4, !40, i64 101, i64 4, !40, i64 105, i64 4, !40, i64 109, i64 4, !40, i64 113, i64 4, !40, i64 117, i64 4, !40, i64 121, i64 4, !40, i64 125, i64 4, !40}
!39 = !{!3, !3, i64 0}
!40 = !{!5, !5, i64 0}
```



Reviewers: asl

Subscribers: qcolombet

Differential Revision: http://reviews.llvm.org/D17441

llvm-svn: 261746
2016-02-24 15:15:02 +00:00
Pete Cooper 67cf9a723b Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper 72bc23ef02 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
David Blaikie f72d05bc7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Job Noorman eb19aea4f9 Drop the W postfix on the 16-bit registers.
This ensures the inline assembly register constraints are properly recognised in
TargetLowering::getRegForInlineAsmConstraint.

llvm-svn: 217479
2014-09-10 06:58:14 +00:00
Job Noorman 9b31bd6bb0 Do not assume the value passed to memset is an i32.
The code in SelectionDAG::getMemset for some reason assumes the value passed to
memset is an i32. This breaks the generated code for targets that only have
registers smaller than 32 bits because the value might get split into multiple
registers by the calling convention. See the test for the MSP430 target included
in the patch for an example.

This patch ensures that nothing is assumed about the type of the value. Instead,
the type is taken from the selected overload of the llvm.memset intrinsic.

llvm-svn: 216716
2014-08-29 08:23:53 +00:00