Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
In bidirectional scheduling this gives more stable results than just
comparing the "reason" fields of the top/bottom node because the reason
field may be higher depending on what other nodes are in the queue.
Differential Revision: http://reviews.llvm.org/D19401
llvm-svn: 273755
Allocating larger register classes first should give better allocation
results (and more importantly for myself, make the lit tests more stable
with respect to scheduler changes).
Patch by Matthias Braun
llvm-svn: 270312
Summary:
This includes a hazard recognizer implementation to replace some of
the hazard handling we had during frame index elimination.
Reviewers: arsenm
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18602
llvm-svn: 268143
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
NOTE: re-commit by fixing a failure in Codegen/AMDGPU/llvm.dbg.value.ll
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256282
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256273
Allow a target to do something other than search for copies
that will avoid cross register bank copies.
Implement for SI by only rewriting the most basic copies,
so it should look through anything like a subregister extract.
I'm not entirely satisified with this because it seems like
eliminating a reg_sequence that isn't fully used should work
generically for all targets without them having to override
something. However, it seems to be tricky to have a simple
implementation of this without rewriting to invalid kinds
of subregister copies on some targets.
I'm not sure if there is currently a generic way to easily check
if a subregister index would be valid for the current use.
The current set of TargetRegisterInfo::get*Class functions don't
quite behave like I would expect (e.g. getSubClassWithSubReg
returns the maximal register class rather than the minimal), so
I'm not sure how to make the generic test keep searching if
SrcRC:SrcSubReg is a valid replacement for DefRC:DefSubReg. Making
the default implementation to check for simple copies breaks
a variety of ARM and x86 tests by producing illegal subregister uses.
The ARM tests are not actually changed since it should still be using
the same sharesSameRegisterFile implementation, this just relaxes
them to not check for specific registers.
llvm-svn: 248478