Currently ExecutionContext::GetByteOrder() always returns the host byte
order. This seems like a simple mistake: the return keyword appears to
have been omitted by accident. This patch fixes that and adds a unit
test.
Bugreport: https://llvm.org/PR37950
Differential revision: https://reviews.llvm.org/D48704
llvm-svn: 368181
After the recent refactorings the SymbolVendor passthrough no longer
serve any purpose. This patch removes those methods, and updates all
callsites to go to the symbol file directly -- in most cases that just
means calling GetSymbolFile()->foo() instead of
GetSymbolVendor()->foo().
llvm-svn: 368001
Completion requests have two fields that are essentially unimplemented:
`m_match_start_point` and `m_max_return_elements`. This would've been
okay, if it wasn't for the fact that this caused a bunch of useless
parameters to be passed around. Occasionally there would be a comment or
assert saying that they are not supported. This patch removes them.
llvm-svn: 367385
When investigating a completion bug I got confused by the API.
LongestCommonPrefix finds the longest common prefix of the strings in
the string list. Instead of returning that string through an output
argument, just return it by value.
llvm-svn: 367384
SymbolFilePDB tests were using GetTypeSystemForLanguage but weren't
changed to accomodate the use of an llvm::Expected. I adjusted them
accordingly.
llvm-svn: 367368
Summary:
Instead of having SymbolVendor coordinate Symtab construction between
Symbol and Object files, make the SymbolVendor function a passthrough,
and put all of the logic into the SymbolFile.
Reviewers: clayborg, JDevlieghere, jingham, espindola
Subscribers: emaste, mgorny, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D65208
llvm-svn: 367086
The file collector class is useful for creating reproducers,
not just for LLDB, but for other tools as well in LLVM/Clang.
Differential Revision: https://reviews.llvm.org/D65237
llvm-svn: 366956
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
Summary: Make debugserver a tool like lldb-server, so it can be included/excluded via `LLDB_TOOL_DEBUGSERVER_BUILD`. This replaces the old `LLDB_NO_DEBUGSERVER` flag. Doing the same for darwin-debug while I am here.
Reviewers: xiaobai, JDevlieghere, davide
Reviewed By: xiaobai, JDevlieghere
Subscribers: mgorny, lldb-commits, #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D64994
llvm-svn: 366631
Summary:
We can always build debugserver, but we can't always sign it to be useable for testing. `LLDB_USE_SYSTEM_DEBUGSERVER` should only tell whether or not the system debugserver should be used for testing.
The old behavior complicated the logic around debugserver a lot. The new logic sorts out most of it.
Please note that this patch is in early stage and needs some more testing. It should not affect platfroms other than Darwin. It builds on Davide's approach to validate the code-signing identity at configuration time.
What do you think?
Reviewers: xiaobai, JDevlieghere, davide, compnerd, friss, labath, mgorny, jasonmolenda
Reviewed By: JDevlieghere
Subscribers: lldb-commits, #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D64806
llvm-svn: 366433
Summary:
This is the fifth patch to improve module loading in a series that started here (where I explain the motivation and solution): D62499
Reading strings with ReadMemory is really slow when reading the path of the shared library. This is because we don't know the length of the path so use PATH_MAX (4096) and these strings are actually super close to the boundary of an unreadable page. So even though we use process_vm_readv it will usually fail because the read size spans to the unreadable page and we then default to read the string word by word with ptrace.
This new function is very similar to another ReadCStringFromMemory that already exists in lldb that makes sure it never reads cross page boundaries and checks if we already read the entire string by finding '\0'.
I was able to reduce the GetLoadedSharedLibraries call from 30ms to 4ms (or something of that order).
Reviewers: clayborg, xiaobai, labath
Reviewed By: labath
Subscribers: emaste, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62503
llvm-svn: 363750
Before this patch, reproducers weren't relocatable. The reproducer
contained hard coded paths in the VFS mapping, as well in the yaml file
listing the different input files for the command interpreter. This
patch changes that:
- Use relative paths for the DataCollector.
- Use an overlay prefix for the FileCollector.
Differential revision: https://reviews.llvm.org/D63467
llvm-svn: 363697
Summary:
This is the third patch to improve module loading in a series that started here (where I explain the motivation and solution): D62499
Add functions to read the r_debug location to know where the linked list of loaded libraries are so I can generate the `xfer:libraries-svr4` packet.
I'm also using this function to implement `GetSharedLibraryInfoAddress` that was "not implemented" for linux.
Most of this code was inspired by the current ds2 implementation here: https://github.com/facebook/ds2/blob/master/Sources/Target/POSIX/ELFProcess.cpp.
Reviewers: clayborg, xiaobai, labath
Reviewed By: clayborg, labath
Subscribers: emaste, krytarowski, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62501
llvm-svn: 363458
This test seems to occasionally fail because editline returns a
different number of lines. Rewrite the message in such a way that we
also see the actual lines when that happens (and not just their count).
Also, clean up the dependencies of the test while I'm in there.
llvm-svn: 363404
Summary:
The motivation for this was me wanting to make the validity of dwarf
DIERefs explicit (via llvm::Optional<DIERef>). This meant that the class
would no longer have a default constructor. As the DIERef was being
stored in a UniqueCStringMap, this meant that this container (like all
standard containers) needed to work with non-default-constructible types
too.
This part is achieved by removing the default constructors for the map
entry types, and providing appropriate comparison overloads so that we
can search for map entries without constructing a dummy entry. While
doing that, I took the opportunity to modernize the code, and add some
tests. Functions that were completely unused are deleted.
This required also some changes in the Symtab code, as it was default
constructing map entries, which was not impossible even though its
value type was default-constructible. Technically, these changes could
be avoided with some SFINAE on the entry type, but I felt that the code
is cleaner this way anyway.
Reviewers: JDevlieghere, sgraenitz
Subscribers: mgorny, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D63268
llvm-svn: 363357
This replaces the `info` typedef with a nested struct named Info. This
means we now have FooProvider and FooProvider::Info, instead of two
related but separate classes FooProvider and FooInfo. This change is
mostly cosmetic.
llvm-svn: 363211
Summary:
This is the first of a few patches I have to improve the performance of dynamic module loading on Android.
In this first diff I'll describe the context of my main motivation and will then link to it in the other diffs to avoid repeating myself.
## Motivation
I have a few scenarios where opening a specific feature on an Android app takes around 40s when lldb is attached to it. The reason for that is because 40 modules are dynamicly loaded at that point in time and each one of them is taking ~1s.
## The problem
To learn about new modules we have a breakpoint on a linker function that is called twice whenever a module is loaded. One time just before it's loaded (so lldb can check which modules are loaded) and another right after it's loaded (so lldb can check again which ones are loaded and calculate the diference).
It's figuring out which modules are loaded that is taking quite some time. This is currently done by traversing the linked list of loaded shared libraries that the linker maintains in memory. Each item in the linked list requires its own `x` packet sent to the gdb server (this is android so the network also plays a part). In my scenario there are 400+ loaded libraries and even though we read 0x800 worth of bytes at a time we still make ~180 requests that end up taking 150-200ms.
We also do this twice, once before the module is loaded (state = eAdd) and another right after (state = eConsistent) which easly adds up to ~400ms per module.
## A solution
**Implement `xfer:libraries-svr4` in lldb-server:**
I noticed in the code that loads the new modules that it had support for the `xfer:libraries-svr4` packet (added ~4 years ago to support the ds2 debug server) but we didn't support it in lldb-server. This single packet returns an xml list of all the loaded modules by the process. The advantage is that there's no more need to make 180 requests to read the linked list. Additionally this new requests takes around 10ms.
**More efficient usage of the `xfer:libraries-svr4` packet in lldb:**
When `xfer:libraries-svr4` is available the Process class has a `LoadModules` function that requests this packet and then loads or unloads modules based on the current list of loaded modules by the process.
This is the function that is used by the DYLDRendezvous class to get the list of loaded modules before and after the module is loaded. However, this is really not needed since the LoadModules function already loaded or unloaded the modules accordingly. I changed this strategy to call LoadModules only once (after the process has loaded the module).
**Bugs**
I found a few issues in lldb while implementing this and have submitted independent patches for them.
I tried to devide this into multiple logical patches to make it easier to review and discuss.
## Tests
I wanted to put these set of diffs up before having all the tests up and running to start having them reviewed from a techical point of view. I'm also having some trouble making the tests running on linux so I need more time to make that happen.
# This diff
The `xfer` packages follow the same protocol, they are requested with `xfer:<object>:<read|write>:<annex>:<offset,length>` and a return that starts with `l` or `m` depending if the offset and length covers the entire data or not. Before implementing the `xfer:libraries-svr4` I refactored the `xfer:auxv` to generically handle xfer packets so we can easly add new ones.
The overall structure of the function ends up being:
* Parse the packet into its components: object, offset etc.
* Depending on the object do its own logic to generate the data.
* Return the data based on its size, the requested offset and length.
Reviewers: clayborg, xiaobai, labath
Reviewed By: labath
Subscribers: mgorny, krytarowski, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62499
llvm-svn: 362982
The x86 assembly inspection engine has code to support detecting a
mid-function epilogue that ends in a RET instruction; add support for
recognizing an epilogue that ends in a JMP, and add a check that the
unwind state has been restored to the original stack setup; reinstate
the post-prologue unwind state after this JMP instruction.
The assembly inspection engine used for other architectures,
UnwindAssemblyInstEmulation, detects mid-function epilogues by
tracking branch instructions within the function and "forwards"
the current unwind state to the targets of the branches. If
an epilogue unwinds the stack and exits, followed by a branch
target, we get back to the correct unwind state. The x86
unwinder should move to this same algorithm, or possibly even
look at implementing an x86 instruction emulation plugin and
get UnwindAssemblyInstEmulation to work for x86 too. I added
a branch instruction recognizier method that will be necessary
if we want to switch the algorithm.
Differential Revision: https://reviews.llvm.org/D62764
<rdar://problem/51074422>
llvm-svn: 362456
Summary:
This test base class is missing the teardown making the second set of tests extending it to fail in an assertion in the FileSystem::Initialize() (as it's being initialized twice).
Not sure why this isn't failing the build bots.. (unless they're running without asserts?).
With this fix `ninja LLDBServerTests && ./tools/lldb/unittests/tools/lldb-server/tests/LLDBServerTests` successfully runs and passes all tests.
Reviewers: clayborg, xiaobai, labath
Reviewed By: xiaobai, labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62788
llvm-svn: 362406
There is likely also an underlying bug in all code that calls
CPlusPlusNameParser with nullptrs, but this patch can also stand for
itself.
rdar://problem/49072829
llvm-svn: 362177
Summary:
My main goal here is to make lldb-server work with Android Studio.
This is currently not the case because lldb-server is started in platform mode listening on a domain socket. When Android Studio connects to it lldb-server crashes because even though it's listening on a domain socket as soon as it gets a connection it asserts that it's a TCP connection, which will obviously fails for any non-tcp connection.
To do this I came up with a new method called GetConnectURI() in Socket that returns the URI needed to connect to the connected portion of the socket.
Reviewers: labath, clayborg, xiaobai
Reviewed By: labath
Subscribers: mgorny, jfb, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62089
llvm-svn: 362173
Summary:
This is useless and it's giving warnings in the build bots:
/home/motus/netbsd8/netbsd8/llvm/tools/lldb/unittests/Utility/TimerTest.cpp:67:43: warning: use of assignment suppression and length modifier together in gnu_scanf format [-Wformat=]
Reviewers: xiaobai
Subscribers: krytarowski, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62626
llvm-svn: 362107
The issue was caused by the error checking code that was added. It was incorrectly adding an extra abbreviation when DWARFEnumState::Complete was received since it would push an extra abbreviation onto the list with the abbreviation code of zero. This cause m_idx_offset in each DWARFAbbreviationDeclarationSet to be set to UINT32_MAX. This valid indicates we must linearly search for attributes, not access them in O(1) time. This caused every DWARFDebugInfoEntry that would try to get its DWARFAbbreviationDeclaration from the CU's DWARFAbbreviationDeclarationSet to always linearly search the abbreviation set for a given abbreviation code. Easy to see why this would cause things to be slow.
This regression was caused by: https://reviews.llvm.org/D59370. I asked to ensure there was no regression is parsing or access speed, but that must not have been done. In my test with 40 DWARF files trying to set a breakpoint by function name and in a header file, I see a 8% speed improvement with this fix.
There was no regression in correctness, just very inefficient access.
Added full unit testing for DWARFAbbreviationDeclarationSet parsing to ensure this doesn't regress.
Differential Revision: https://reviews.llvm.org/D62630
llvm-svn: 362105
Summary:
The `log timer dump` is showing the time of the function itself minus any function that is called from this one that also happens to be timed. However, this is really not obvious and it also makes it hard to understand the time spent in total and also which children are actually taking the time.
To get a better reading of the timer dump I added the total, children (which I named child) and also the hit count. I used these timers to figure out a performance issue and only after adding this things were more clear to me.
It looks like this:
```
(lldb) log timer dump
35.447713617 sec (total: 35.449s; child: 0.001s; count: 1374) for void SymbolFileDWARF::Index()
29.717921481 sec (total: 29.718s; child: 0.000s; count: 8230500) for const lldb_private::ConstString &lldb_private::Mangled::GetDemangledName(lldb::LanguageType) const
21.049508865 sec (total: 24.683s; child: 3.633s; count: 1399) for void lldb_private::Symtab::InitNameIndexes()
...
```
Reviewers: clayborg, teemperor, labath, espindola, xiaobai
Reviewed By: labath, xiaobai
Subscribers: emaste, mgorny, arichardson, eraman, MaskRay, jdoerfert, labath, davide, teemperor, aprantl, erik.pilkington, jfb, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D61235
llvm-svn: 361987
Summary:
This is a general fix for the ConnectionFileDescriptor class but my main motivation was to make lldb-server working with IPv6.
The connect URI can use square brackets ([]) to wrap the interface part of the URI (e.g.: <scheme>://[<interface>]:<port>). For IPv6 addresses this is a must since its ip can include colons and it will overlap with the port colon otherwise. The URIParser class parses the square brackets correctly but the ConnectionFileDescriptor doesn't generate them for IPv6 addresses making it impossible to connect to the gdb server when using this protocol.
How to reproduce the issue:
```
$ lldb-server p --server --listen [::1]:8080
...
$ lldb
(lldb) platform select remote-macosx
(lldb) platform connect connect://[::1]:8080
(lldb) platform process -p <pid>
error: unable to launch a GDB server on 'computer'
```
The server was actually launched we were just not able to connect to it. With this fix lldb will correctly connect. I fixed this by wrapping the ip portion with [].
Reviewers: labath
Reviewed By: labath
Subscribers: xiaobai, mgorny, jfb, lldb-commits, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D61833
llvm-svn: 361898
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
This reverts commit c28f81797084b8416ff5be4f9e79000a9741ca6a.
This reverts commit 7e79b64642486f510f7872174eb831df68d65b84.
Looks like there is more work to be done on this patch. I've spoken to
the author and for the time being we will revert to keep the buildbots
green.
llvm-svn: 361086
This is a general fix for the ConnectionFileDescriptor class but my main
motivation was to make lldb-server working with IPv6.
The connect URI can use square brackets ([]) to wrap the interface part
of the URI (e.g.: <scheme>://[<interface>]:<port>). For IPv6 addresses
this is a must since its ip can include colons and it will overlap with
the port colon otherwise. The URIParser class parses the square brackets
correctly but the ConnectionFileDescriptor doesn't generate them for
IPv6 addresses making it impossible to connect to the gdb server when
using this protocol.
How to reproduce the issue:
$ lldb-server p --server --listen [::1]:8080
...
$ lldb
(lldb) platform select remote-macosx
(lldb) platform connect connect://[::1]:8080
(lldb) platform process -p <pid>
error: unable to launch a GDB server on 'computer'
The server was actually launched we were just not able to connect to it.
With this fix lldb will correctly connect. I fixed this by wrapping the
ip portion with [].
Differential Revision: https://reviews.llvm.org/D61833
Patch by António Afonso <antonio.afonso@gmail.com>
llvm-svn: 361079
This reverts commit b5a8abd57f23e2f621d5ceb0f64f1bb8f9579c3f. This
should not be needed as the lldb-server tool will add
`LLDB_CAN_USE_LLDB_SERVER` which will never be set to true on Windows.
llvm-svn: 360745
We can piggyback off the existing add_lldb_tool_subdirectory to decide
whether or not lldb-server should be built.
Differential revision: https://reviews.llvm.org/D61872
llvm-svn: 360621
I think the recent change to flush the SB API recording uncovered a real
issue on the Windows bot. Although I couldn't make much sense of the
error message "unknown file: error: SEH exception with code 0x3221225477
thrown in the test body.", it prompted me to look at the test. In the
unit test we were recording during replay, which is obviously not
correct. I think we didn't see this issue before because we flushed once
after the recording was done. This patch unsets the recording logic
during the replay part of the test.
Hopefully this fixed the Windows bot.
llvm-svn: 360298
Previous ArchSpec tests didn't catch this bug since we never tested just the OS being out of date. Fixed the bug and covered this with a test that would catch this.
This was found when trying to load a core file where the core file was an ELF file with just the e_machine for architeture and where the ELF header had no OS set in the OSABI field of the e_ident. It wasn't merging the architecture with the target architecture correctly.
Differential Revision: https://reviews.llvm.org/D61659
llvm-svn: 360292
Remove SymbolVendorMacOSX from the test, as this plugin is not available
on non-mac platforms, and it does not seem to be necessary anyway.
Declare inlined-functions.yaml as an input of the test in cmake.
llvm-svn: 360169
Summary:
This is necessary to support parsing expressions like ".cfa -16 + ^", as
that format is used in breakpad STACK CFI expressions.
Since the PDB expressions use the same parser, this change will affect
them too, but I don't believe that should be a problem in practice. If
PDBs do contain the negative values, it's very likely that they are
intended to be parsed the same way, and if they don't, then it doesn't
matter.
In case that we do ever need to handle this differently, we can always
make the parser behavior customizable, or just use a different parser.
To make sure that the integer size is big enough for everyone, I switch
from using a (unsigned) 32-bit integer to a 64-bit (signed) one.
Reviewers: amccarth, clayborg, aleksandr.urakov
Subscribers: markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D61311
llvm-svn: 360166
Checking this in for Antonio Afonso:
This diff changes the function LineEntry::GetSameLineContiguousAddressRange so that it also includes function calls that were inlined at the same line of code.
My motivation is to decrease the step over time of lines that heavly rely on inlined functions. I have multiple examples in the code base I work that makes a step over stop 20 or mote times internally. This can easly had up to step overs that take >500ms which I was able to lower to 25ms with this new strategy.
The reason the current code is not extending the address range beyond an inlined function is because when we resolve the symbol at the next address of the line entry we will get the entry line corresponding to where the original code for the inline function lives, making us barely extend the range. This then will end up on a step over having to stop multiple times everytime there's an inlined function.
To check if the range is an inlined function at that line I also get the block associated with the next address and check if there is a parent block with a call site at the line we're trying to extend.
To check this I created a new function in Block called GetContainingInlinedBlockWithCallSite that does exactly that. I also added a new function to Declaration for convinence of checking file/line named CompareFileAndLine.
To avoid potential issues when extending an address range I added an Extend function that extends the range by the AddressRange given as an argument. This function returns true to indicate sucess when the rage was agumented, false otherwise (e.g.: the ranges are not connected). The reason I do is to make sure that we're not just blindly extending complete_line_range by whatever GetByteSize() we got. If for some reason the ranges are not connected or overlap, or even 0, this could be an issue.
I also added a unit tests for this change and include the instructions on the test itself on how to generate the yaml file I use for testing.
Differential Revision: https://reviews.llvm.org/D61292
llvm-svn: 360071
Summary:
According to [C128] "Virtual functions should specify exactly one
of `virtual`, `override`, or `final`", I've added override where a
virtual function is overriden but the explicit `override` keyword
was missing. Whenever both `virtual` and `override` were specified,
I removed `virtual`. As C.128 puts it:
> [...] writing more than one of these three is both redundant and
> a potential source of errors.
I anticipate a discussion about whether or not to add `override` to
destructors but I went for it because of an example in [ISOCPP1000].
Let me repeat the comment for you here:
Consider this code:
```
struct Base {
virtual ~Base(){}
};
struct SubClass : Base {
~SubClass() {
std::cout << "It works!\n";
}
};
int main() {
std::unique_ptr<Base> ptr = std::make_unique<SubClass>();
}
```
If for some odd reason somebody removes the `virtual` keyword from the
`Base` struct, the code will no longer print `It works!`. So adding
`override` to destructors actively protects us from accidentally
breaking our code at runtime.
[C128]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c128-virtual-functions-should-specify-exactly-one-of-virtual-override-or-final
[ISOCPP1000]: https://github.com/isocpp/CppCoreGuidelines/issues/1000#issuecomment-476951555
Reviewers: teemperor, JDevlieghere, davide, shafik
Reviewed By: teemperor
Subscribers: kwk, arphaman, kadircet, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D61440
llvm-svn: 359868
Summary:
This node represents can be used to refer to the initial value, which is
sometimes pushed onto the DWARF stack as the "input" to the DWARF
expression. The typical use case (and the reason why I'm introducing it)
is that the "Canonical Frame Address" is passed this way to the DWARF
expressions computing the values of registers during frame unwind.
The nodes are converted into dwarf by keeping track of DWARF stack depth
an any given point, and then copying the initial value from the bottom
of the stack via the DW_OP_pick opcode. This could be made more
efficient for simple expressions, but here I chose to start with the
most general implementation possible.
Reviewers: amccarth, clayborg, aleksandr.urakov
Subscribers: aprantl, jasonmolenda, lldb-commits, markmentovai
Differential Revision: https://reviews.llvm.org/D61183
llvm-svn: 359560
Their functionality overlaps with the newly introduced
PostfixExpressionTests (r359288). Tests, which still exercise some
pdb-related functionality (register name resolution) have been kept.
llvm-svn: 359450
Summary:
The DWARF spec states that the DWARF stack arguments are numbered from
the top. Our implementation of DW_OP_pick was counting them from the
bottom.
This bug probably wasn't noticed because nobody (except my upcoming
postfix-to-DWARF converter) uses DW_OP_pick, but I've cross-checked with
gdb to confirm that counting from the top is the expected behavior.
This patch fixes the implementation to match the spec and gdb behavior
and adds a test.
Reviewers: jasonmolenda, clayborg
Subscribers: mgorny, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D61182
llvm-svn: 359436
Summary:
The new dwarf generator is pretty much a verbatim copy of the one in
PDB.
In order to write a pdb-independent test for it, I needed to write a
dummy "symbol resolver", which (together with the fact that I'll need
one more for breakpad-specific resolution logic) prompted me to create a
more simple interface for algorithms which replace or "resolve"
SymbolNodes. The resolving algorithms in NativePDB have been updated to
make use of that too.
I have removed a couple of NativePDB tests which weren't testing
anything pdb-specific and where the tested functionality was covered by
the new format-agnostic tests I have added.
Reviewers: amccarth, clayborg, aleksandr.urakov
Subscribers: aprantl, markmentovai, lldb-commits, jasonmolenda, JDevlieghere
Differential Revision: https://reviews.llvm.org/D61056
llvm-svn: 359288
Summary:
When we want to compare a ConstString against a string literal (or any other non-ConstString),
we currently have to explicitly turn the other string into a ConstString. This makes sense as
comparing ConstStrings against each other is only a fast pointer comparison.
However, currently we (rather incorrectly) use in several places in LLDB temporary ConstStrings when
we just want to compare a given ConstString against a hardcoded value, for example like this:
```
if (extension != ConstString(".oat") && extension != ConstString(".odex"))
```
Obviously this kind of defeats the point of ConstStrings. In the comparison above we would
construct two temporary ConstStrings every time we hit the given code. Constructing a
ConstString is relatively expensive: we need to go to the StringPool, take a read and possibly
an exclusive write-lock and then look up our temporary string in the string map of the pool.
So we do a lot of heavy work for essentially just comparing a <6 characters in two strings.
I initially wanted to just fix these issues by turning the temporary ConstString in static variables/
members, but that made the code much less readable. Instead I propose to add a new overload
for the ConstString comparison operator that takes a StringRef. This comparison operator directly
compares the ConstString content against the given StringRef without turning the StringRef into
a ConstString.
This means that the example above can look like this now:
```
if (extension != ".oat" && extension != ".odex")
```
It also no longer has to unlock/lock two locks and call multiple functions in other TUs for constructing
the temporary ConstString instances. Instead this should end up just being a direct string comparison
of the two given strings on most compilers.
This patch also directly updates all uses of temporary and short ConstStrings in LLDB to use this new
comparison operator. It also adds a some unit tests for the new and old comparison operator.
Reviewers: #lldb, JDevlieghere, espindola, amccarth
Reviewed By: JDevlieghere, amccarth
Subscribers: amccarth, clayborg, JDevlieghere, emaste, arichardson, MaskRay, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D60667
llvm-svn: 359281
Summary:
The postfix expressions in PDB and breakpad symbol files are similar
enough that they can be parsed by the same parser. This patch
generalizes the parser in the NativePDB plugin and moves it into the
PostfixExpression file created in the previous commit (r358976).
The generalization consists of treating any unrecognised token as a
"symbol" node (previously these would only be created for tokens
starting with "$", and other token would abort the parse). This is
needed because breakpad symbols can also contain ".cfa" tokens, which
refer to the frame's CFA.
The cosmetic changes include:
- using a factory function instead of a class for creating nodes (this
is more generic as it allows the same BumpPtrAllocator to be used for
other things too)
- using dedicated function for parsing operator tokens instead of a
DenseMap (more efficient as we don't need to create the DenseMap every
time).
Reviewers: amccarth, clayborg, JDevlieghere, aleksandr.urakov
Subscribers: jasonmolenda, lldb-commits, markmentovai, mgorny
Differential Revision: https://reviews.llvm.org/D61003
llvm-svn: 359073
The tests reading the untouched module list are now not using any lldb
code (as module list loading lives in llvm now), so they can be removed.
The "filtering" of the module list remains (and probably will remain) an
lldb concept, so I keep those tests, but replace the checked-in binaries
with their yaml equivalents.
The binaries which are no longer referenced by any tests have been
removed.
llvm-svn: 358850
LLVM's wchar to UTF8 conversion routine expects an empty string to store the output.
GetHostName() on Windows is sometimes called with a non-empty string which triggers
an assert. The simple fix is to clear the output string before the conversion.
llvm-svn: 358550
D59433 and D60501 changed the way UUIDs are computed from minidump
files. This was done to synchronize the U(G)UID representation with the
native tools of given platforms, but it created a mismatch between
minidumps and breakpad files.
This updates the breakpad algorithm to match the one found in minidumps,
and also adds a couple of tests which should fail if these two ever get
out of sync. Incidentally, this means that the module id in the breakpad
files is almost identical to our notion of UUIDs, so the computation
algorithm can be somewhat simplified.
llvm-svn: 358500
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
In this patch, I just remove the structure definitions for the
ModuleList stream and the associated parsing code. The rest of the code
is converted to work with the definitions in llvm. NFC.
llvm-svn: 358070
Summary:
This patch adds support for parsing STACK CFI records from breakpad
files. The expressions specifying the values of registers are not
parsed.The idea is that these will be handed off to the postfix
expression -> dwarf compiler, once it is extracted from the internals of
the NativePDB plugin.
Reviewers: clayborg, amccarth, markmentovai
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D60268
llvm-svn: 357975
I also update the tests for SystemInfo parsing to use the yaml2minidump
capabilities in llvm instead of relying on checked-in binaries.
llvm-svn: 357896
This patch removes the lower layers of the minidump parsing code from
the MinidumpParser class, and replaces it with the minidump parser in
llvm.
Not all functionality is already avaiable in the llvm class, but it is
enough for us to be able to stop enumerating streams manually, and rely
on the minidump directory parsing code from the llvm class.
This also removes some checked-in binaries which were used to test error
handling in the parser, as the error handling is now done (and tested)
in llvm. Instead I just add one test that ensures we correctly propagate
the errors reported by the llvm parser. The input for this test can be
written in yaml instead of a checked-in binary.
llvm-svn: 357748
Previously we would classify all STACK records into a single bucket.
This is not really helpful, because there are three distinct types of
records beginning with the token "STACK" (STACK CFI INIT, STACK CFI,
STACK WIN). To be consistent with how we're treating other records, we
should classify these as three different record types.
It also implements the logic to put "STACK CFI INIT" and "STACK CFI"
records into the same "section" of the breakpad file, as they are meant
to be read together (similar to how FUNC and LINE records are treated).
The code which performs actual parsing of these records will come in a
separate patch.
llvm-svn: 357691
For some reason I had convinced myself that functions returning by
pointer or reference do not require recording their result. However,
after further considering I don't see how that could work, at least not
with the current implementation. Interestingly enough, the reproducer
instrumentation already (mostly) accounts for this, though the
lldb-instr tool did not.
This patch adds the missing macros and updates the lldb-instr tool.
Differential revision: https://reviews.llvm.org/D60178
llvm-svn: 357639
The python plugin uses wrappers generated by swig. For the symbols to be
available, we'd need to link against liblldb, which is not an option
because the symbols could conflict with the static library we are
testing. Instead we define the symbols ourselves in the unit test.
llvm-svn: 356971
Currently LLDB crashes when autocompleting a command that ends with a
backtick because the quote character wasn't handled. This fixes that and
adds a unit test for this function.
Differential revision: https://reviews.llvm.org/D59779
llvm-svn: 356927
Move SBRegistry method registrations from SBReproducer.cpp into files
declaring the individual APIs, in order to reduce the memory consumption
during build and improve maintainability. The current humongous
SBRegistry constructor exhausts all memory on a NetBSD system with 4G
RAM + 4G swap, therefore making it impossible to build LLDB.
Differential Revision: https://reviews.llvm.org/D59427
llvm-svn: 356481
Summary: This function is useful for expression evaluation, especially when doing swift debugging on windows.
Reviewers: aprantl, labath
Reviewed By: labath
Subscribers: teemperor, jdoerfert, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D59072
llvm-svn: 355631
"apple-latest" which llvm uses to indicate the newest supported ISA.
Add a unit test; I'm only testing an armv8.1 instruction in this
unit test which would already be disassembled correctly because we
set the disassembler to ARM v8.2 mode, but it ensures that nothing
has been broken by adding this cpu spec.
<rdar://problem/38714781>
llvm-svn: 355578
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
This was reverted because it breaks the GreenDragon bot, but
the reason for the breakage is lost, so I'm resubmitting this
now so we can find out what the problem is.
llvm-svn: 355528
Summary:
This file implements some general purpose data structures, and so it
belongs to the Utility module.
Reviewers: zturner, jingham, JDevlieghere, clayborg, espindola
Subscribers: emaste, mgorny, javed.absar, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D58970
llvm-svn: 355509
Summary:
I'm doing this because I plan on implementing `ComputeClangResourceDirectory`
on windows so that `GetClangResourceDir` will work. Additionally, I made
test_paths make sure that the directory member of the returned FileSpec is not
none. This will fail on windows since `ComputeClangResourceDirectory` isn't
implemented yet.
Differential Revision: https://reviews.llvm.org/D58748
llvm-svn: 355463
There are set of classes in Target that describe the parameters of a
process - e.g. it's PID, name, user id, and similar. However, since it
is a bare description of a process and contains no actual functionality,
there's nothing specifically that makes this appropriate for being in
Target -- it could just as well be describing a process on the host, or
some hypothetical virtual process that doesn't even exist.
To cement this, I'm moving these classes to Utility. It's possible that
we can find a better place for it in the future, but as it is neither
Host specific nor Target specific, Utility seems like the most appropriate
place for the time being.
After this there is only 2 remaining references to Target from Host,
which I'll address in a followup.
Differential Revision: https://reviews.llvm.org/D58842
llvm-svn: 355342
Summary:
This creates an abstract base class called "UserIDResolver", which can
be implemented to provide user/group ID resolution capabilities for
various objects. Posix host implement a PosixUserIDResolver, which does
that using posix apis (getpwuid and friends). PlatformGDBRemote
forwards queries over the gdb-remote link, etc. ProcessInstanceInfo
class is refactored to make use of this interface instead of taking a
platform pointer as an argument. The base resolver class already
implements caching and thread-safety, so implementations don't have to
worry about that.
The main motivating factor for this was to remove external dependencies
from the ProcessInstanceInfo class (so it can be put next to
ProcessLaunchInfo and friends), but it has other benefits too:
- ability to test the user name caching code
- ability to test ProcessInstanceInfo dumping code
- consistent interface for user/group resolution between Platform and
Host classes.
Reviewers: zturner, clayborg, jingham
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D58167
llvm-svn: 355323
Given that we have a target named Symbols, one wonders why a
file named Symbols.cpp is not in this target. To be clear,
the functions exposed from this file are really focused on
*locating* a symbol file on a given host, which is where the
ambiguity comes in. However, it makes more sense conceptually
to be in the Symbols target. While some of the specific places
to search for symbol files might change depending on the Host,
this is not inherently true in the same way that, for example,
"accessing the file system" or "starting threads" is
fundamentally dependent on the Host.
PDBs, for example, recently became a reality on non-Windows platforms,
and it's theoretically possible that DSYMs could become a thing on non
MacOSX platforms (maybe in a remote debugging scenario). Other types of
symbol files, such as DWO, DWP, etc have never been tied to any Host
platform anyway.
After this patch, there is only one remaining dependency from
Host to Target.
Differential Revision: https://reviews.llvm.org/D58730
llvm-svn: 355032
Summary:
This behavior was originally added in rL252264 (git commit 76a7f365da)
in order to be extra careful with handling platforms like watchos and tvos.
However, as far as triples go, those two (and others) are treated as OSes and
not environments, so that should not really apply here.
Additionally, this behavior is incorrect and can lead to incorrect ArchSpecs.
Because android is specified as an environment and not an OS, not propogating
the environment can lead to modules and targets being misidentified.
Differential Revision: https://reviews.llvm.org/D58664
llvm-svn: 354938
Summary:
These functions should always return the opposite of the
`Triple{Environment,OS,Vendor}WasSpecified` functions. Unspecified unknown is
the same as unspecified, which is why one set of functions should give us what
we want. It's possible to have specified unknown, which is why we can't just
rely on checking the enum values of vendor/os/environment. We must also ensure
that the names of these are empty and not "unknown".
Differential Revision: https://reviews.llvm.org/D58653
llvm-svn: 354933
Pass dummy '.' as format string for Timer() rather than an empty string,
in order to silence gcc warnings about empty format string
(-Wformat-zero-length). The actual format string is irrelevant
to the test in question.
Differential Revision: https://reviews.llvm.org/D58680
llvm-svn: 354922
remove the Initialize function, move the things that can fail into the
static factory function. The factory function now returns
Expected<Parser> instead of Optional<Parser> so that it can give a
reason why creation failed.
llvm-svn: 354668
The tests were doing two somewhat independent things:
- checking that the registers can be retrieved from the minidump file
- checking that they can be converted into a form suitable for
consumption by lldb
The first thing requires a minidump file (but it's independent of other
lldb structures), while the second one does not require a minidump file
(but it needs lldb register info structures).
Splitting this into two tests gives an opportunity to write more
detailed tests, and allows the two pieces of functionality to be moved
into different packages, if that proves to be necessary.
llvm-svn: 354662
In r353906 we hooked up clang and lldb's reproducer infrastructure to
capture files used by clang. This patch adds the necessary logic to have
clang reuse the files from lldb's reproducer during replay.
Differential revision: https://reviews.llvm.org/D58309
llvm-svn: 354283
Host had a function to get the UnixSignals instance corresponding
to the current host architecture. This means that Host had to
include a file from Target. To break this dependency, just make
this a static function directly in UnixSignals. We already have
the function UnixSignals::Create(ArchSpec) anyway, so we just
need to have UnixSignals::CreateForHost() which determines which
value to pass for the ArchSpec.
The goal here is to eventually break the Host->Target->Host
circular dependency.
Differential Revision: https://reviews.llvm.org/D57780
llvm-svn: 354168
Add missing EINTR handling for kevent() calls. If the call is
interrupted, return from Poll() as if zero events were returned and let
the polling resume on next iteration. This fixes test flakiness
on NetBSD.
Includes a test case suggested by Pavel Labath on D42206.
Differential Revision: https://reviews.llvm.org/D58230
llvm-svn: 354122
Fix the tests not to use '127.0.0.1' and 'localhost' interchangeably.
More specifically, since tests bind specifically to 127.0.0.1, connect
to that address as well; using 'localhost' can resolve to IPv6 address
which can cause issues -- for example, if the matching port happens to
be used by some other process, the tests hang forever waiting for
the client to connect.
While technically the case of randomly selected IPv4 port being taken
on IPv6 loopback is not very likely, NetBSD happens to be suffering from
some weird kernel issue where connection to that port succeeds
nevertheless. Until we can really figure out what goes wrong there,
this saves us from the tests hanging randomly.
Differential Revision: https://reviews.llvm.org/D58131
llvm-svn: 353868
This enables the function to be called with a StringRef without jumping
through any hoops. I rename the function to "PutStringAsRawHex8" to
honor the extended interface. I also remove ".c_str()" from any calls to
this function I could find.
llvm-svn: 353841
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
Summary:
This adds support for auto-detection of path style to SymbolFileBreakpad
(similar to how r351328 did the same for DWARF). We guess each file
entry separately, as we have no idea which file came from which compile
units (and different compile units can have different path styles). The
breakpad generates should have already converted the paths to absolute
ones, so this guess should be reasonable accurate, but as always with
these kinds of things, it is hard to give guarantees about anything.
In an attempt to bring some unity to the path guessing logic, I move the
guessing logic from inside SymbolFileDWARF into the FileSpec class and
have both symbol files use it to implent their desired behavior.
Reviewers: clayborg, lemo, JDevlieghere
Subscribers: aprantl, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D57895
llvm-svn: 353702
Summary: Replace 0xc9 (LEAVE) with 0xcb (RETF) in ret_pattern_p(). Also put 0xc3 first, since it is the most common form and will match first.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: labath, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D57928
llvm-svn: 353643
The NetBSD kernel currently does not support detecting closed slave pty
via kevent on master pty. This causes the test to hang forever.
To avoid that, disable the test until the kernel is fixed.
Differential Revision: https://reviews.llvm.org/D57912
llvm-svn: 353545
instructions
Summary: This patch makes `x86AssemblyInspectionEngine` to process zero value of
the `B` field of the `REX` prefix in a correct way for `PUSH` and `POP`
instructions. MSVC sometimes emits `pushq %rbp` instruction as `0x40 0x55`, and
it was not parsed correctly before.
Reviewers: jasonmolenda, labath
Reviewed By: jasonmolenda, labath
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D57745
llvm-svn: 353281
Summary:
These classes describe the details of the process we are about to
launch, and so they are naturally used by the launching code in the Host
module. Previously they were present in Target because that is the most
important (but by far not the only) user of the launching code.
Since the launching code has other customers, must of which do not care
about Targets, it makes sense to move these classes to the Host layer,
next to the launching code.
This move reduces the number of times that Target is included from host
to 8 (it used to be 14).
Reviewers: zturner, clayborg, jingham, davide, teemperor
Subscribers: emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D56602
llvm-svn: 353047
stored relative to VFRAME
Summary:
This patch makes LLDB able to retrieve proper values for function arguments and
local variables stored in PDB relative to VFRAME register.
Patch contains retrieval of corresponding FPO table entries from PDB and a
generic translator from FPO programs to DWARF expressions to get correct VFRAME
value.
Patch also improves variables-locations.test and makes this test passable on
x86.
Patch By: leonid.mashinsky
Reviewers: zturner, asmith, stella.stamenova, aleksandr.urakov
Reviewed By: zturner
Subscribers: arphaman, labath, mgorny, aprantl, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55122
llvm-svn: 352845
The test was using ASSERT_EQ instead of ASSERT_STREQ which meant we were
comparing string addresses instead of the actual string. This caused the
test to fail with with the sanitizers enabled.
llvm-svn: 352780
This patch adds the file provider which is responsible for capturing
files used by LLDB.
When capturing a reproducer, we use a file collector that is very
similar to the one used in clang. For every file that we touch, we add
an entry with a mapping from its virtual to its real path. When we
decide to generate a reproducer we copy over the files and their
permission into to reproducer folder.
When replaying a reproducer, we load the VFS mapping and instantiate a
RedirectingFileSystem. The latter will transparently use the files
available in the reproducer.
I've tested this on two macOS machines with an artificial example.
Still, it is very likely that I missed some places where we (still) use
native file system calls. I'm hoping to flesh those out while testing
with more advanced examples. However, I will fix those things in
separate patches.
Differential revision: https://reviews.llvm.org/D54617
llvm-svn: 352538
The two records aren't used by anything yet, but this part can be
separated out easily, so I am comitting it separately to simplify
reviews of the followup patch.
llvm-svn: 352507
We use UUID::fromOptionalData to read UUID's from the Mach-O files, so UUID's
of all 0's are invalid UUID's.
We also get uuid's from debugserver, which need to match the file UUID's. So
we need an API that treats "000000000" as invalid as well. Added that and use it.
Differential Revision: https://reviews.llvm.org/D57195
llvm-svn: 352122
I want to add 512-bits support but I first want to make sure I'm
not breaking anything obvious. This is the first of a series of commit
adding tests. The first oddity found is that Scalar from APInt(s)
always constructed signed. Maybe at some point we want to revisit
this, but at least now we have a test to document how the API behaves.
<rdar://problem/46886288>
llvm-svn: 352103
This patch extends SymbolFileBreakpad::AddSymbols to include the symbols
from the FUNC records too. These symbols come from the debug info and
have a size associated with them, so they are given preference in case
there is a PUBLIC record for the same address.
To achieve this, I first pre-process the symbols into a temporary
DenseMap, and then insert the uniqued symbols into the module's symtab.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56590
llvm-svn: 351781
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This centralizes parsing of breakpad records, which was previously
spread out over ObjectFileBreakpad and SymbolFileBreakpad.
For each record type X there is a separate breakpad::XRecord class, and
an associated parse function. The classes just store the information in
the breakpad records in a more accessible form. It is up to the users to
determine what to do with that data.
This separation also made it possible to write some targeted tests for
the parsing code, which was previously unaccessible, so I write a couple
of those too.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: mgorny, fedor.sergeev, lldb-commits
Differential Revision: https://reviews.llvm.org/D56844
llvm-svn: 351541
In commit svn r351496 I changed this condition from
`if(LLDB_CAN_USE_DEBUGSERVER)` to `if(NOT SKIP_TEST_DEBUGSERVER)`.
This causes debugserver tests to run on windows, which shouldn't happen.
SKIP_TEST_DEBUGSERVER is set either by the user (it shouldn't be set on
windows builds) or in the debugserver CMake logic (which doesn't get
included when building on windows). Therefore, I changed the condition
to be `if(LLDB_CAN_USE_DEBUGSERVER AND NOT SKIP_TEST_DEBUGSERVER)`.
llvm-svn: 351498
Summary:
The flags `LLDB_USE_SYSTEM_DEBUGSERVER` and `LLDB_NO_DEBUGSERVER` were
introduced to the debugserver build. If one of these two flags are set, then we
do not build and sign debugserver. However I noticed that we were still building
the lldbDebugserverCommon and lldbDebugserverCommon_NonUI libraries regardless
of whether or not these flags were set. I don't believe we should be building
these libraries unless we are building and signing debugserver.
Reviewers: sgraenitz, davide, JDevlieghere, beanz, vsk, aprantl, labath
Subscribers: mgorny, jfb, lldb-commits
Differential Revision: https://reviews.llvm.org/D56763
llvm-svn: 351496
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
Every callsite was passing an empty SymbolContext, so this parameter
had no effect. Inside the DWARF implementation of this function,
however, there was one codepath that checked members of the
SymbolContext. Since no call-sites actually ever used this
functionality, it was essentially dead code, so I've deleted this
code path as well.
llvm-svn: 351132
Summary:
Major fixes after D54476 (use Diff1 as base for comparison to see only recent changes):
* In standalone builds target directory for debugserver must be LLDB's bin, not LLVM's bin
* Default identity for code signing must not force-override LLVM_CODESIGNING_IDENTITY globally
We have a lot of cases, make them explicit:
* ID used for code signing (debugserver and in tests):
** `LLDB_CODESIGN_IDENTITY` if set explicitly, or otherwise
** `LLVM_CODESIGNING_IDENTITY` if set explicitly, or otherwise
** `lldb_codesign` as the default
* On Darwin we have a debugserver target that:
* On other systems, the debugserver target is not defined, which is equivalent to **[3A]**
Common configurations on Darwin:
* **[1A]** `cmake -GNinja ../llvm` builds debugserver from source and signs with `lldb_codesign`, no code signing for other binaries (prints status: //lldb debugserver: /path/to/bin/debugserver//)
* **[1A]** `cmake -GNinja -DLLVM_CODESIGNING_IDENTITY=- -DLLDB_CODESIGN_IDENTITY=lldb_codesign ../llvm` builds debugserver from source and signs with `lldb_codesign`, ad-hoc code signing for other binaries (prints status: //lldb debugserver: /path/to/bin/debugserver//)
* **[2A]** `cmake -GNinja -DLLVM_CODESIGNING_IDENTITY=- -DLLDB_USE_SYSTEM_DEBUGSERVER=ON ../llvm` copies debugserver from system, ad-hoc code signing for other binaries (prints status: //Copy system debugserver from: /path/to/system/debugserver//)
* **[2B]** `cmake -GNinja -DLLVM_CODESIGNING_IDENTITY=- ../llvm` same, but prints additional warning: //Cannot code sign debugserver with identity '-'. Will fall back to system's debugserver. Pass -DLLDB_CODESIGN_IDENTITY=lldb_codesign to override the LLVM value for debugserver.//
* **[3A]** `cmake -GNinja -DLLVM_CODESIGNING_IDENTITY=- -DLLDB_NO_DEBUGSERVER=ON ../llvm` debugserver not available (prints status: //lldb debugserver will not be available)//
Reviewers: JDevlieghere, beanz, davide, vsk, aprantl, labath
Reviewed By: JDevlieghere, labath
Subscribers: mgorny, #lldb, lldb-commits
Differential Revision: https://reviews.llvm.org/D55013
llvm-svn: 350388
Summary:
The main difference between the classes was supposed to be the fact that
one is backed by llvm::SmallVector, and the other by std::vector.
However, over the years, they have accumulated various other differences
too.
This essentially removes the std::vector version, as that is pretty much
identical to llvm::SmallVector<T, 0>, and combines their interfaces. It
does not attempt to do a more significant refactoring, even though there
is still a lot of duplication in this file, as it is hard to tell which
quirk of some API is depended on by somebody (and, a previous, more
ambitious attempt at this in D16769 has failed).
I also add some tests, including one which demonstrates one of the
quirks/bugs of the API I have noticed in the process.
Reviewers: clayborg, teemperor, tberghammer
Subscribers: mgorny, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56170
llvm-svn: 350380
Summary:
instead of returning the architecture through by-ref argument and a
boolean value indicating success, we can just return the ArchSpec
directly. Since the ArchSpec already has an invalid state, it can be
used to denote the failure without the additional bool.
Reviewers: clayborg, zturner, espindola
Subscribers: emaste, arichardson, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56129
llvm-svn: 350291
The warning comes from the fact that the MOCK_METHOD macros don't use the
override keyword internally. This makes us not use it in the manually overriden
methods either, to be consistent.
llvm-svn: 350209
The assertion fired (with a debug visual studio STL) because we tried to
dereference the end of a vector (although it was only to take its
address again and form an end iterator). Rewrite this logic to avoid the
questionable code.
llvm-svn: 350091
Each process plug-in can create its own custom commands. I figured it would be nice to be able to dump things from the minidump file from the lldb command line, so I added the start of the some custom commands.
Currently you can dump:
minidump stream directory
all linux specifc streams, most of which are strings
each linux stream individually if desired, or all with --linux
The idea is we can expand the command set to dump more things, search for data in the core file, and much more. This patch gets us started.
Differential Revision: https://reviews.llvm.org/D55727
llvm-svn: 349429
Breakpad creates minidump files that sometimes have:
- linux maps textual content
- no MemoryInfoList
Right now unless the file has a MemoryInfoList we get no region information.
This patch:
- reads and caches the memory region info one time and sorts it for easy subsequent access
- get the region info from the best source in this order:
- linux maps info (if available)
- MemoryInfoList (if available)
- MemoryList or Memory64List
- returns memory region info for the gaps between regions (before the first and after the last)
Differential Revision: https://reviews.llvm.org/D55522
llvm-svn: 349182
Summary:
These are general purpose "utility" classes, whose functionality is not
debugger-specific in any way. As such, I believe they belong in the
Utility module.
This doesn't break any particular dependency (yet), but it reduces the
number of Core dependencies across the board.
Reviewers: zturner, jingham, teemperor, clayborg
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D55361
llvm-svn: 349157
This commit added new test inputs, but it did not add them to the cmake
files. This caused the test to fail at runtime.
While in there, I also sorted the list of minidump test inputs.
llvm-svn: 349154
The MinidumpParser::GetFilteredModuleList() code was attempting to iterate through the entire module list and if it found more than one entry for a given module name, it wanted to pick the MinidumpModule with the lowest address. A bug existed where it wasn't doing that due to "exists" variable being inverted. "exists" was set to true if it was inserted, not if it existed. Furthermore, the order of the modules would be modified by sorting all modules from low address to high address (using MinidumpModule::base_of_image). This fix also maintains the original order which means your executable is at index 0 as intended instead of some random shared library.
Tests were added to ensure this functionality doesn't regress.
Differential Revision: https://reviews.llvm.org/D55614
llvm-svn: 349062
This patch changes the way the reproducer is initialized. Rather than
making changes at run time we now do everything at initialization time.
To make this happen we had to introduce initializer options and their SB
variant. This allows us to tell the initializer that we're running in
reproducer capture/replay mode.
Because of this change we also had to alter our testing strategy. We
cannot reinitialize LLDB when using the dotest infrastructure. Instead
we use lit and invoke two instances of the driver.
Another consequence is that we can no longer enable capture or replay
through commands. This was bound to go away form the beginning, but I
had something in mind where you could enable/disable specific providers.
However this seems like it adds very little value right now so the
corresponding commands were removed.
Finally this change also means you now have to control this through the
driver, for which I replaced --reproducer with --capture and --replay to
differentiate between the two modes.
Differential revision: https://reviews.llvm.org/D55038
llvm-svn: 348152
Summary:
This patch adds possibility of searching a public symbol with name and type in
a symbol file, not only in a symtab. It is helpful when working with PE, because
PE's symtabs contain only imported / exported symbols only. Such a search is
required for e.g. evaluation of an expression that calls some function of
the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: davide, emaste, arichardson, aleksandr.urakov, jingham,
lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 347960
Two of the file system tests are failing on Windows - this updates them to expect the correct values after the refactor of the file system code.
llvm-svn: 347796
When I landed the initial reproducer framework I knew there were some
things that needed improvement. Rather than bundling it with a patch
that adds more functionality I split it off into this patch. I also
think the API is stable enough to add unit testing, which is included in
this patch as well.
Other improvements include:
- Refactor how we initialize the loader and generator.
- Improve naming consistency: capture and replay seems the least ambiguous.
- Index providers by name and make sure there's only one of each.
- Add convenience methods for creating and accessing providers.
Differential revision: https://reviews.llvm.org/D54616
llvm-svn: 347716
On Windows, when using the VFS without going through FileSpec, the
absolute path to `/foo` is `\\foo`. This updates the unittest to expect
that.
llvm-svn: 347712
Summary:
Use llvm_codesign to sign debugserver with entitlements.
Set global LLVM_CODESIGNING_IDENTITY from LLDB_CODESIGN_IDENTITY (if given).
Pass through ENTITLEMENTS from add_lldb_executable to add_llvm_executable.
Handle reconfigurations correctly.
We have a lot of cases, make them explicit:
(1) build and sign debugserver, if all conditions apply:
* LLDB_NO_DEBUGSERVER=OFF (default)
* On Darwin: LLDB_USE_SYSTEM_DEBUGSERVER=OFF (default)
* On Darwin: LLVM_CODESIGNING_IDENTITY == lldb_codesign
(2) use system debugserver, if on Darwin and any of:
* LLDB_USE_SYSTEM_DEBUGSERVER=ON and found on system (explicit case)
* LLVM_CODESIGNING_IDENTITY != lldb_codesign and found on system (fallback case)
(3) debugserver will not be available, in case of:
* LLDB_NO_DEBUGSERVER=ON
* On Darwin: LLVM_CODESIGNING_IDENTITY != lldb_codesign and not found on system
(4) error state, in case of:
* LLDB_USE_SYSTEM_DEBUGSERVER=ON and not found on system
* LLDB_USE_SYSTEM_DEBUGSERVER=ON and LLDB_NO_DEBUGSERVER=ON
Reviewers: xiaobai, beanz, vsk, JDevlieghere
Subscribers: mgorny, lldb-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D54476
llvm-svn: 347305
The DataExtractor class itself was moved to Utility some time ago, but
it seems this was not reflected in the location of the test code. Fix
that.
llvm-svn: 346867
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This moves construction of data buffers into the FileSystem class. Like
some of the previous refactorings we don't translate the path yet
because the functionality hasn't been landed in LLVM yet.
Differential revision: https://reviews.llvm.org/D54272
llvm-svn: 346598
The whole point of this change was making it possible to resolve paths
without depending on the FileSystem, which is not what I did here. Not
sure what I was thinking...
llvm-svn: 346466
In order to call real_path from the TildeExpressionResolver we need
access to the FileSystem. Since the resolver lives under utility we have
to pass in the FS.
llvm-svn: 346457
Summary:
Now that llvm demangler supports more generic customization, we can
implement type substitution directly on top of this API. This will allow
us to remove the specialized hooks which were added to the demangler to
support this use case.
Reviewers: sgraenitz, erik.pilkington, JDevlieghere
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D54074
llvm-svn: 346233
This patch introduces the simple MSVCUndecoratedNameParser. It is needed for
parsing names of PDB symbols corresponding to template instantiations. For
example, for the name `operator<<A>'::`2'::B::operator> we can't just split the
name with :: (as it is implemented for now) to retrieve its scopes. This parser
processes such names in a more correct way.
Differential Revision: https://reviews.llvm.org/D52461
llvm-svn: 346213
Summary:
pcm files can end up being processed by lldb with relocations to be
made for the .debug_info section. When a R_AARCH64_ABS64 relocation
was required lldb would hit an `assert(false)` and die.
Add R_AARCH64_ABS64 relocations to the S+A 64 bit width code path. Add
a test for R_AARCH64_ABS64 and R_AARCH64_ABS32 .rela.debug_info
relocations in a pcm file.
Reviewers: sas, xiaobai, davide, javed.absar, espindola
Reviewed By: davide
Subscribers: labath, zturner, emaste, mgorny, arichardson, kristof.beyls
Differential Revision: https://reviews.llvm.org/D51566
llvm-svn: 346171
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the OCaml debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54060
llvm-svn: 346159
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the Java debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54059
llvm-svn: 346158
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the Go debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54057
llvm-svn: 346157
This patch modifies how we open File instances in LLDB. Rather than
passing a path or FileSpec to the constructor, we now go through the
virtual file system. This is needed in order to make things work with
the VFS in the future.
Differential revision: https://reviews.llvm.org/D54020
llvm-svn: 346049
Summary:
This patch adds possibility of searching a public symbol with name and type in a
symbol file. It is helpful when working with PE, because PE's symtabs contain
only imported / exported symbols only. Such a search is required for e.g.
evaluation of an expression that calls some function of the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: emaste, arichardson, aleksandr.urakov, jingham, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 345957
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
Speculative fix for the Xcode bots where we were seeing the assertion
being triggered because we would re-initialize the FileSystem without
terminating it.
llvm-svn: 345849
This patch removes the GetByteSize method from FileSpec and updates its
uses with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53788
llvm-svn: 345812
The new implementation of EnumerateDirectory relies on `::no_push()`
being implemented for the VFS recursive directory iterators. However
this patch (D53465) hasn't been landed yet.
llvm-svn: 345787
This patch extends the FileSystem class with a bunch of functions that
are currently implemented as methods of the FileSpec class. These
methods will be removed in future commits and replaced by calls to the
file system.
The new functions are operated in terms of the virtual file system which
was recently moved from clang into LLVM so it could be reused in lldb.
Because the VFS is stateful, we turned the FileSystem class into a
singleton.
Differential revision: https://reviews.llvm.org/D53532
llvm-svn: 345783
Summary:
This patch fixes issues with a stack realignment.
MSVC maintains two frame pointers (`ebx` and `ebp`) for a realigned stack - one
is used for access to function parameters, while another is used for access to
locals. To support this the patch:
- adds an alternative frame pointer (`ebx`);
- considers stack realignment instructions (e.g. `and esp, -32`);
- along with CFA (Canonical Frame Address) which point to the position next to
the saved return address (or to the first parameter on the stack) introduces
AFA (Aligned Frame Address) which points to the position of the stack pointer
right after realignment. AFA is used for access to registers saved after the
realignment (see the test);
Here is an example of the code with the realignment:
```
struct __declspec(align(256)) OverAligned {
char c;
};
void foo(int foo_arg) {
OverAligned oa_foo = { 1 };
auto aaa_foo = 1234;
}
void bar(int bar_arg) {
OverAligned oa_bar = { 2 };
auto aaa_bar = 5678;
foo(1111);
}
int main() {
bar(2222);
return 0;
}
```
and here is the `bar` disassembly:
```
push ebx
mov ebx, esp
sub esp, 8
and esp, -100h
add esp, 4
push ebp
mov ebp, [ebx+4]
mov [esp+4], ebp
mov ebp, esp
sub esp, 200h
mov byte ptr [ebp-200h], 2
mov dword ptr [ebp-4], 5678
push 1111 ; foo_arg
call j_?foo@@YAXH@Z ; foo(int)
add esp, 4
mov esp, ebp
pop ebp
mov esp, ebx
pop ebx
retn
```
Reviewers: labath, zturner, jasonmolenda, stella.stamenova
Reviewed By: jasonmolenda
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53435
llvm-svn: 345577
We currently had a 2-step process where we had to call
SetBaseClassesForType and DeleteBaseClasses. Every single caller
followed this exact 2-step process, and there was manual memory
management going on with raw pointers. We can do better than this
by storing a vector of unique_ptrs and passing this around.
This makes for a cleaner API, and we only need to call one method
so there is no possibility of a user forgetting to call
DeleteBaseClassSpecifiers.
In addition to this, it also makes for a *simpler* API. Part of
why I wanted to do this is because when I was implementing the native
PDB interface I had to spend some time understanding exactly what I
was deleting and why. ClangAST has significant mental overhead
associated with it, and reducing the API surface can go along
way to making it simpler for people to understand.
Differential Revision: https://reviews.llvm.org/D53590
llvm-svn: 345312
This fixes a bug PlatformDarwin::SDKSupportsModule introduced by
https://reviews.llvm.org/D47889. VersionTuple::tryParse() can deal
with an optional third (micro) component, but the parse will fail when
there are extra characters after the version number (e.g.: trying to
parse the substring "12.0.sdk" out of "iPhoneSimulator12.0.sdk" fails
after that patch). Fixed here by stripping the ".sdk" suffix first.
(Part of) rdar://problem/45041492
Differential Revision https://reviews.llvm.org/D53677
llvm-svn: 345274
Summary: A RichManglingContext constructed with an invalid demangled name or with a demangled function name without any context will have an empty context. This triggers an assertion in RichManglingContext::GetBufferRef() when debugging a native Windows process on x86 when it shouldn't. Remove the assertion.
Reviewers: aleksandr.urakov, zturner, lldb-commits
Reviewed By: zturner
Subscribers: erik.pilkington
Differential Revision: https://reviews.llvm.org/D52626
llvm-svn: 343292
NativeProcessProtocol::ReadMemoryWithoutTrap had a bug, where it failed
to properly remove inserted breakpoint opcodes if the memory read
partially overlapped the trap opcode. This could not happen on x86
because it has a one-byte breakpoint instruction, but it could happen on
arm, which has a 4-byte breakpoint instruction (in arm mode).
Since triggerring this condition would only be possible on an arm
machine (and even then it would be a bit tricky). I test this using a
NativeProcessProtocol unit test.
llvm-svn: 343076
Summary:
NativeProcessProtocol is an abstract class, but it still contains a
significant amount of code. Some of that code is tested via tests of
specific derived classes, but these tests don't run everywhere, as they
are OS and arch-specific. They are also relatively high-level, which
means some functionalities (particularly the failure cases) are
hard/impossible to test.
In this approach, I replace the abstract methods with mocks, which
allows me to inject failures into the lowest levels of breakpoint
setting code and test the class behavior in this situation.
Reviewers: zturner, teemperor
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D52152
llvm-svn: 342875
Summary:
This patch adds a framework for adding descriptions to the command completions we provide.
It also adds descriptions for completed top-level commands so that we can test this code.
Completions are in general supposed to be displayed alongside the completion itself. The descriptions
can be used to provide additional information about the completion to the user. Examples for descriptions
are function signatures when completing function calls in the expression command or the binary name
when providing completion for a symbol.
There is still some boilerplate code from the old completion API left in LLDB (mostly because the respective
APIs are reused for non-completion related purposes, so the CompletionRequest doesn't make sense to be
used), so that's why I still had to change some function signatures. Also, as the old API only passes around a
list of matches, and the descriptions are for these functions just another list, I had to add some code that
essentially just ensures that both lists are always the same side (e.g. all the manual calls to
`descriptions->AddString(X)` below a `matches->AddString(Y)` call).
The initial command descriptions that come with this patch are just reusing the existing
short help that is already added in LLDB.
An example completion with descriptions looks like this:
```
(lldb) pl
Available completions:
platform -- Commands to manage and create platforms.
plugin -- Commands for managing LLDB plugins.
```
Reviewers: #lldb, jingham
Reviewed By: #lldb, jingham
Subscribers: jingham, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D51175
llvm-svn: 342181
tests and don't mark this as a failure. This happens when we've
linked against an llvm without the ARM target built in. Davide
added some cmake conditionals to avoid building this test when the
target was absent from llvm's build, but we're still finding some
bots that manage to get in this situation.
<rdar://problem/44270082>
llvm-svn: 342072
Summary:
This commit fixes following problems after rL341782:
- Broken SymbolFilePDBTests
- Warning on comparison of integers of different signs
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51162
llvm-svn: 341942
The warning is
comparison of integers of different signs: 'const int' and 'const unsigned long'
and triggered by
EXPECT_EQ (num_of_instructions, inst_list.GetSize());
as num_of_instructions is an int in this comparison (and the RHS is size_t).
llvm-svn: 341931
code. This will enable disassembly of the optional subset of
neon that some Cortex cores support. Add a unit test to check
that a few of these instructions disassemble as expected.
<rdar://problem/26674303>
llvm-svn: 341623
TestCompletion was failing quite frequently on our Linux bots. Some tracing
revealed that when we are iterating BaseDir we are not getting all the entries.
More specifically, we are sometimes missing the entry corresponding to the
TestCompletion directory that the first test in DirCompletionAbsolute is
looking for. BaseDir is the directory where lit is creating all the temporary
files. The semantics of opendir/readdir are unclear when it comes to iterating
over a directory that changes contents, but it seems like on Linux you might
fail to list an entry even if it was there before opendir and is still present
throughout the iteration. Changing the test to only look inside of the test-
specific directory seems to fix the instability.
This commit also removes some assertions that were added to try to track down
this issue.
llvm-svn: 341425
If you tried to complete somwthing like ~/., lldb would come up with a lot
of non-existent filenames by concatenating every exisitng file in the directory
with an initial '.'.
This was due to a workaround for an llvm::fs::path::filename behavior that
was not applied selectively enough.
llvm-svn: 341268
Summary:
This class was initially in Host because its implementation used to be
very OS-specific. However, with C++11, it has become a very simple
std::condition_variable wrapper, with no host-specific code.
It is also a general purpose utility class, so it makes sense for it to
live in a place where it can be used by everyone.
This has no effect on the layering right now, but it enables me to later
move the Listener+Broadcaster+Event combo to a lower layer, which is
important, as these are used in a lot of places (notably for launching a
process in Host code).
Reviewers: jingham, zturner, teemperor
Reviewed By: zturner
Subscribers: xiaobai, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50384
llvm-svn: 341089
Summary:
The syntax highlighting feature so far is mutually exclusive with the lldb feature
that marks the current column in the line by underlining it via an ANSI color code.
Meaning that if you enable one, the other is automatically disabled by LLDB.
This was caused by the fact that both features inserted color codes into the the
source code and were likely to interfere with each other (which would result
in a broken source code printout to the user).
This patch moves the cursor code into the highlighting framework, which provides
the same feature to the user in normal non-C source code. For any source code
that is highlighted by Clang, we now also have cursor marking for the whole token
that is under the current source location. E.g., before we underlined only the '!' in the
expression '1 != 2', but now the whole token '!=' is underlined. The same for function
calls and so on. Below you can see two examples where we before only underlined
the first character of the token, but now underline the whole token.
{F7075400}
{F7075414}
It also simplifies the DisplaySourceLines method in the SourceManager as most of
the code in there was essentially just for getting this column marker to work as
a FormatEntity.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D51466
llvm-svn: 341003
As we only use PATH_MAX for an assert in a unit test that is supposed
to catch the random failures on the Swift CI bots, we might as well
just ifdef this assert out on Windows.
llvm-svn: 340652
Summary:
The DirCompletionAbsolute is still randomly failing on the nodes even after D50722, so this patch adds more asserts
that verify certain properties on which the actual completion implementation relies on.
The first assert checks that the directory we complete on actually exists. If the directory doesn't exist on the
next CI failure, this assert should catch it and we know that the 0 matches come from a missing base directory.
The second assert is just checking that we are below the PATH_MAX limit that the completion checks against.
This check could randomly fail if the temporary directories we generate are sometimes longer than PATH_MAX,
and the assert can tell us that this is the reason we failed (instead of the mysterious '0 matches').
(As a sidenote: We shouldn't be checking against PATH_MAX anyway in the code (as this is just wrong). Also
the disk completion API really needs a better error mechanism than returning 0 on both error or no-results.)
Reviewers: aprantl, friss
Reviewed By: aprantl
Subscribers: abidh
Differential Revision: https://reviews.llvm.org/D51111
llvm-svn: 340589
Summary:
There is currently a way to skip the debugserver build. See how the CMake
variables SKIP_DEBUGSERVER and LLDB_CODESIGN_IDENTITY are used if you're
interested in that.
This allows us to skip building lldb-server as well. There is another
debug server called ds2 that can be used with LLDB. If you choose to use
ds2, this flag is very useful because it can cut down the build time of LLDB.
Differential Revision: https://reviews.llvm.org/D49282
llvm-svn: 340560
Summary:
CompletionTest.DirCompletionAbsolute had a random failure on a CI node
(in the failure, the completion count was 0, while we expected it to be 1),
but there seems no good reason for it to fail. The sanitizers don't complain
about the test when it's run, so I think we don't have some uninitialized
memory that we access here.
My best bet is that the unique directory selection randomly failed on the CI
node because maybe the FS there doesn't actually guarantee the atomic fopen
assumptions we make in the LLVM code (or some other funny race condition).
In this case a different test run could get the same directory and clean its contents
which would lead to 0 results.
The other possible explanation is that someone changed the CI configuration
on the node and changed the working dir to something very long, which would
make our PATH_MAX test fail (which also leads to 0 results), but I think that case
is unlikely.
This patch is just a stab in the dark that (hopefully) fixes this random failure by
giving each test a (more) unique working directory by appending the unique
test name to the temp-dir prefix. Also adds one more ASSERT_NO_ERROR to
one of our chdir calls just in case that is the reason for failing.
The good thing is that this refactor gets rid of most of the static variables
and files that we previously had as shared state between the different tests.
Potentially fixes rdar://problem/43150260
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: jfb, lldb-commits
Differential Revision: https://reviews.llvm.org/D50722
llvm-svn: 339715
Summary:
This issue came up because it caused problems in our unit tests. The StringPool did connect counterparts only once and silently ignored the values passed in subsequent calls.
The simplest solution for the unit tests would be silent overwrite. In practice, however, it seems useful to assert that we never overwrite a different mangled counterpart.
If we ever have mangled counterparts for other languages than C++, this makes it more likely to notice collisions.
I added an assertion that allows the following cases:
* inserting a new value
* overwriting the empty string
* overwriting with an identical value
I fixed the unit tests, which used "random" strings and thus produced collisions.
It would be even better if there was a way to reset or isolate the StringPool, but that's a different story.
Reviewers: jingham, friss, labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D50536
llvm-svn: 339669
Summary:
We can optimize and refactor some of the classes in RangeMap.h, but first
we should have some tests for all the data structures in there. This adds a first
batch of tests for the Range class itself.
There are some unexpected results happening when mixing invalid and valid ranges, so
I added some FIXME's for that in the tests.
Reviewers: vsk
Reviewed By: vsk
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50620
llvm-svn: 339611
Summary:
Removing FastDemangle will greatly reduce maintenance efforts. This patch replaces the last point of use in LLDB. Semantics should be kept intact.
Once this is agreed upon, we can:
* Remove the FastDemangle sources
* Add more features e.g. substitutions in template parameters, considering all variations, etc.
Depends on LLVM patch https://reviews.llvm.org/D50586
Reviewers: erik.pilkington, friss, jingham, JDevlieghere
Subscribers: kristof.beyls, chrib, lldb-commits
Differential Revision: https://reviews.llvm.org/D50587
llvm-svn: 339583
Summary: It was not immediately clear to me whether or not non-null-terminated StringRef's are supported in ConstString and/or the counterpart mechanism. From this test it seems to be fine. Maybe useful to keep?
Reviewers: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D50334
llvm-svn: 339292
Summary:
I set up a new review, because not all the code I touched was marked as a change in old one anymore.
In preparation for this review, there were two earlier ones:
* https://reviews.llvm.org/D49612 introduced the ItaniumPartialDemangler to LLDB demangling without conceptual changes
* https://reviews.llvm.org/D49909 added a unit test that covers all relevant code paths in the InitNameIndexes() function
Primary goals for this patch are:
(1) Use ItaniumPartialDemangler's rich mangling info for building LLDB's name index.
(2) Provide a uniform interface.
(3) Improve indexing performance.
The central implementation in this patch is our new function for explicit demangling:
```
const RichManglingInfo *
Mangled::DemangleWithRichManglingInfo(RichManglingContext &, SkipMangledNameFn *)
```
It takes a context object and a filter function and provides read-only access to the rich mangling info on success, or otherwise returns null. The two new classes are:
* `RichManglingInfo` offers a uniform interface to query symbol properties like `getFunctionDeclContextName()` or `isCtorOrDtor()` that are forwarded to the respective provider internally (`llvm::ItaniumPartialDemangler` or `lldb_private::CPlusPlusLanguage::MethodName`).
* `RichManglingContext` works a bit like `LLVMContext`, it the actual `RichManglingInfo` returned from `DemangleWithRichManglingInfo()` and handles lifetime and configuration. It is likely stack-allocated and can be reused for multiple queries during batch processing.
The idea here is that `DemangleWithRichManglingInfo()` acts like a gate keeper. It only provides access to `RichManglingInfo` on success, which in turn avoids the need to handle a `NoInfo` state in every single one of its getters. Having it stored within the context, avoids extra heap allocations and aids (3). As instantiations of the IPD the are considered expensive, the context is the ideal place to store it too. An efficient filtering function `SkipMangledNameFn` is another piece in the performance puzzle and it helps to mimic the original behavior of `InitNameIndexes`.
Future potential:
* `DemangleWithRichManglingInfo()` is thread-safe, IFF using different contexts in different threads. This may be exploited in the future. (It's another thing that it has in common with `LLVMContext`.)
* The old implementation only parsed and indexed Itanium mangled names. The new `RichManglingInfo` can be extended for various mangling schemes and languages.
One problem with the implementation of RichManglingInfo is the inaccessibility of class `CPlusPlusLanguage::MethodName` (defined in source/Plugins/Language/..), from within any header in the Core components of LLDB. The rather hacky solution is to store a type erased reference and cast it to the correct type on access in the cpp - see `RichManglingInfo::get<ParserT>()`. At the moment there seems to be no better way to do it. IMHO `CPlusPlusLanguage::MethodName` should be a top-level class in order to enable forward delcarations (but that is a rather big change I guess).
First simple profiling shows a good speedup. `target create clang` now takes 0.64s on average. Before the change I observed runtimes between 0.76s an 1.01s. This is still no bulletproof data (I only ran it on one machine!), but it's a promising indicator I think.
Reviewers: labath, jingham, JDevlieghere, erik.pilkington
Subscribers: zturner, clayborg, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50071
llvm-svn: 339291
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary: `IsEmpty()` and `operator bool() == false` have equal semantics. Usage in Mangled::GetDemangledName() was incorrect. What it actually wants is a check for null-string. Split this off of D50071 and added a test to clarify usage.
Reviewers: labath, jingham
Subscribers: erik.pilkington, lldb-commits
Differential Revision: https://reviews.llvm.org/D50327
llvm-svn: 339014
Summary:
This patch allows LLDB's Stream class to count the bytes it has written to so far.
There are two major motivations for this patch:
The first one is that this will allow us to get rid of all the handwritten byte counting code
we have in LLDB so far. Examples for this are pretty much all functions in LLDB that
take a Stream to write to and return a size_t, which usually represents the bytes written.
By moving to this centralized byte counting mechanism, we hopefully can avoid some
tricky errors that happen when some code forgets to count the written bytes while
writing something to a stream.
The second motivation is that this is needed for the migration away from LLDB's `Stream`
and towards LLVM's `raw_ostream`. My current plan is to start offering a fake raw_ostream
class that just forwards to a LLDB Stream.
However, for this raw_ostream wrapper we need to fulfill the raw_ostream interface with
LLDB's Stream, which currently lacks the ability to count the bytes written so far (which
raw_ostream exposes by it's `tell()` method). By adding this functionality it is trivial to start
rolling out our raw_ostream wrapper (and then eventually completely move to raw_ostream).
Also, once this fake raw_ostream is available, we can start replacing our own code writing
to LLDB's Stream by LLVM code writing to raw_ostream. The best example for this is the
LEB128 encoding we currently ship, which can be replaced with by LLVM's version which
accepts an raw_ostream.
From the point of view of the pure source changes this test does, we essentially just renamed
the Write implementation in Stream to `WriteImpl` while the `Write` method everyone is using
to write its raw bytes is now just forwarding and counting the written bytes.
Reviewers: labath, davide
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D50159
llvm-svn: 338733
Summary: In order to exploit the potential of LLVM's new ItaniumPartialDemangler for indexing in LLDB, we expect conceptual changes in the implementation of the InitNameIndexes function. Here is a unit test that aims at covering all relevant code paths in that function.
Reviewers: labath, jingham, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: friss, teemperor, davide, clayborg, erik.pilkington, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D49909
llvm-svn: 338695
Summary:
This patch adds syntax highlighting support to LLDB. When enabled (and lldb is allowed
to use colors), printed source code is annotated with the ANSI color escape sequences.
So far we have only one highlighter which is based on Clang and is responsible for all
languages that are supported by Clang. It essentially just runs the raw lexer over the input
and then surrounds the specific tokens with the configured escape sequences.
Reviewers: zturner, davide
Reviewed By: davide
Subscribers: labath, teemperor, llvm-commits, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D49334
llvm-svn: 338662
Summary:
When I added the Stream unit test (r338488), the build bots failed due to an out-of-
bound reads when passing an empty string to the PutCStringAsRawHex8 method.
In r338491 I removed the test case to fix the bots.
This patch fixes this in PutCStringAsRawHex8 by always checking for the terminating
null character in the given string (instead of skipping it the first time). It also re-adds the
test case I removed.
Reviewers: vsk
Reviewed By: vsk
Subscribers: vsk, lldb-commits
Differential Revision: https://reviews.llvm.org/D50149
llvm-svn: 338637
The suspicious behavior is obviously because this method reads
OOB memory, so I'll remove it for now and re-add the test alongside
the fix later.
llvm-svn: 338491
Summary:
This adds an initial small unit test for LLDB's Stream class, which should at least cover
most of the functions in the Stream class. StreamString is always in big endian
mode, so that's the only stream byte order path this test covers as of now. Also,
the binary mode still needs to be tested for all print methods.
Also adds some FIXMEs for wrong/strange result values of the Stream class that we hit
while testing those functions.
Reviewers: labath
Reviewed By: labath
Subscribers: probinson, labath, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50027
llvm-svn: 338488
Summary:
We currently allow any completion handler to read and manipulate the list of matches we
calculated so far. This leads to a few problems:
Firstly, a completion handler's logic can now depend on previously calculated results
by another handlers. No completion handler should have such an implicit dependency,
but the current API makes it likely that this could happen (or already happens). Especially
the fact that some completion handler deleted all previously calculated results can mess
things up right now.
Secondly, all completion handlers have knowledge about our internal data structures with
this API. This makes refactoring this internal data structure much harder than it should be.
Especially planned changes like the support of descriptions for completions are currently
giant patches because we have to refactor every single completion handler.
This patch narrows the contract the CompletionRequest has with the different handlers to:
1. A handler can suggest a completion.
2. A handler can ask how many suggestions we already have.
Point 2 obviously means we still have a dependency left between the different handlers, but
getting rid of this is too large to just append it to this patch.
Otherwise this patch just completely hides the internal StringList to the different handlers.
The CompletionRequest API now also ensures that the list of completions is unique and we
don't suggest the same value multiple times to the user. This property has been so far only
been ensured by the `Option` handler, but is now applied globally. This is part of this patch
as the OptionHandler is no longer able to implement this functionality itself.
Reviewers: jingham, davide, labath
Reviewed By: davide
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D49322
llvm-svn: 338151
Summary:
Replace the existing combination of FastDemangle and the fallback to llvm::itaniumDemangle() with LLVM's new ItaniumPartialDemangler. It slightly reduces complexity and slightly improves performance, but doesn't introduce conceptual changes. This patch is preparing for more fundamental improvements on LLDB's demangling approach.
Reviewers: friss, jingham, erik.pilkington, labath, clayborg, mgorny, davide, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: teemperor, JDevlieghere, labath, clayborg, davide, lldb-commits, mgorny, erik.pilkington
Differential Revision: https://reviews.llvm.org/D49612
llvm-svn: 337931