Commit Graph

95 Commits

Author SHA1 Message Date
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Reid Kleckner 41390b47de Revert r346810 "Preserve loop metadata when splitting exit blocks"
It broke the Windows self-host:
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/1457

llvm-svn: 346823
2018-11-14 01:47:32 +00:00
Craig Topper 3c87c2a3c5 Preserve loop metadata when splitting exit blocks
LoopUtils.cpp contains a utility that splits an loop exit block, so that the new block contains only edges coming from the loop. In the case of nested loops, the exit path for the inner loop might also be the back-edge of the outer loop. The new block which is inserted on this path, is now a latch for the outer loop, and it needs to hold the loop metadata for the outer loop. (The test case gives a more concrete view of the situation.)

Patch by Chang Lin (clin1)

Differential Revision: https://reviews.llvm.org/D53876

llvm-svn: 346810
2018-11-13 23:06:49 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Max Kazantsev 58fce7e54b Re-enable "[SCEV] Make computeExitLimit more simple and more powerful"
This patch was temporarily reverted because it has exposed bug 37229 on
PowerPC platform. The bug is unrelated to the patch and was just a general
bug in the optimization done for PowerPC platform only. The bug was fixed
by the patch rL331410.

This patch returns the disabled commit since the bug was fixed.

llvm-svn: 331427
2018-05-03 02:37:55 +00:00
Max Kazantsev 2c287ec9c5 Revert "[SCEV] Make computeExitLimit more simple and more powerful"
This reverts commit 023c8be90980e0180766196cba86f81608b35d38.

This patch triggers miscompile of zlib on PowerPC platform. Most likely it is
caused by some pre-backend PPC-specific pass, but we don't clearly know the
reason yet. So we temporally revert this patch with intention to return it
once the problem is resolved. See bug 37229 for details.

llvm-svn: 330893
2018-04-26 02:07:40 +00:00
Max Kazantsev b1137c42fa [LoopSimplify] Fix incorrect SCEV invalidation
In the function `simplifyOneLoop` we optimistically assume that changes in the
inner loop only affect this very loop and have no impact on its parents. In fact,
after rL329047 has been merged, we can now calculate exit counts for outer
loops which may depend on inner loops. Thus, we need to invalidate all parents
when we do something to a loop.

There is an evidence of incorrect behavior of `simplifyOneLoop`: when we insert
`SE->verify()` check in the end of this funciton, it fails on a bunch of existing
test, in particular:

    LLVM :: Transforms/LoopUnroll/peel-loop-not-forced.ll
    LLVM :: Transforms/LoopUnroll/peel-loop-pgo.ll
    LLVM :: Transforms/LoopUnroll/peel-loop.ll
    LLVM :: Transforms/LoopUnroll/peel-loop2.ll

Note that previously we have fixed issues of this variety, see rL328483.
This patch makes this function invalidate the outermost loop properly.

Differential Revision: https://reviews.llvm.org/D45937
Reviewed By: chandlerc

llvm-svn: 330576
2018-04-23 10:32:37 +00:00
Max Kazantsev 7094c8deb2 [SCEV] Make exact taken count calculation more optimistic
Currently, `getExact` fails if it sees two exit counts in different blocks. There is
no solid reason to do so, given that we only calculate exact non-taken count
for exiting blocks that dominate latch. Using this fact, we can simply take min
out of all exits of all blocks to get the exact taken count.

This patch makes the calculation more optimistic with enforcing our assumption
with asserts. It allows us to calculate exact backedge taken count in trivial loops
like

  for (int i = 0; i < 100; i++) {
    if (i > 50) break;
    . . .
  }

Differential Revision: https://reviews.llvm.org/D44676
Reviewed By: fhahn

llvm-svn: 328611
2018-03-27 07:30:38 +00:00
Anna Thomas bdb9430917 [BasicBlockUtils] Check for unreachable preds before updating LI in UpdateAnalysisInformation
Summary:
We are incorrectly updating the LI when loop-simplify generates
dedicated exit blocks for a loop. The issue is that there's an implicit
assumption that the Preds passed into UpdateAnalysisInformation are
reachable. However, this is not true and breaks LI by incorrectly
updating the header of a loop.

One such case is when we generate dedicated exits when the exit block is
a landing pad (through SplitLandingPadPredecessors). There maybe other
cases as well, since we do not guarantee that Preds passed in are
reachable basic blocks.

The added test case shows how loop-simplify breaks LI for the outer loop (and DT in turn)
after we try to generate the LoopSimplifyForm.

Reviewers: davide, chandlerc, sanjoy

Reviewed By: davide

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D41519

llvm-svn: 321653
2018-01-02 16:25:50 +00:00
Anna Thomas a2ca902033 [SCEV] Teach SCEV to find maxBECount when loop endbound is variant
Summary:
This patch teaches SCEV to calculate the maxBECount when the end bound
of the loop can vary. Note that we cannot calculate the exactBECount.

This will only be done when both conditions are satisfied:
1. the loop termination condition is strictly LT.
2. the IV is proven to not overflow.

This provides more information to users of SCEV and can be used to
improve identification of finite loops.

Reviewers: sanjoy, mkazantsev, silviu.baranga, atrick

Reviewed by: mkazantsev

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D38825

llvm-svn: 315683
2017-10-13 14:30:43 +00:00
Adrian Prantl abe04759a6 Remove the obsolete offset parameter from @llvm.dbg.value
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951

llvm-svn: 309426
2017-07-28 20:21:02 +00:00
Max Kazantsev fa4969539a [SCEV] Do not visit nodes twice in containsConstantSomewhere
This patch reworks the function that searches constants in Add and Mul SCEV expression
chains so that now it does not visit a node more than once, and also renames this function
for better correspondence between its implementation and semantics.

Differential Revision: https://reviews.llvm.org/D35931

llvm-svn: 309367
2017-07-28 06:42:15 +00:00
Chandler Carruth 4a000883c7 [LoopSimplify] Re-instate r306081 with a bug fix w.r.t. indirectbr.
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.

The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.

The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.

If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.

I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.

I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.

The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...

llvm-svn: 306257
2017-06-25 22:45:31 +00:00
Chandler Carruth 73367b6a09 [LoopSimplify] Improve a test for loop simplify minorly. NFC.
I did some basic testing while looking for a bug in my recent change to
loop simplify and even though it didn't find the bug it seems like
a useful improvement anyways.

llvm-svn: 306256
2017-06-25 22:24:02 +00:00
Taewook Oh 2e945ebb13 [BasicBlockUtils] Use getFirstNonPHIOrDbg to set debugloc for instructions created in SplitBlockPredecessors
Summary:
When setting debugloc for instructions created in SplitBlockPredecessors, current implementation copies debugloc from the first-non-phi instruction of the original basic block. However, if the first-non-phi instruction is a call for @llvm.dbg.value, the debugloc of the instruction may point the location outside of the block itself. For the example code of

```
  1 typedef struct _node_t {
  2   struct _node_t *next;
  3 } node_t;
  4
  5 extern node_t *root;
  6
  7 int foo() {
  8   node_t *node, *tmp;
  9   int ret = 0;
 10
 11   node = tmp = root->next;
 12   while (node != root) {
 13     while (node) {
 14       tmp = node;
 15       node = node->next;
 16       ret++;
 17     }
 18   }
 19
 20   return ret;
 21 }
```

, below is the basicblock corresponding to line 12 after Reassociate expressions pass:

```
while.cond:                                       ; preds = %while.cond2, %entry
  %node.0 = phi %struct._node_t* [ %1, %entry ], [ null, %while.cond2 ]
  %ret.0 = phi i32 [ 0, %entry ], [ %ret.1, %while.cond2 ]
  tail call void @llvm.dbg.value(metadata i32 %ret.0, i64 0, metadata !19, metadata !20), !dbg !21
  tail call void @llvm.dbg.value(metadata %struct._node_t* %node.0, i64 0, metadata !11, metadata !20), !dbg !31
  %cmp = icmp eq %struct._node_t* %node.0, %0, !dbg !33
  br i1 %cmp, label %while.end5, label %while.cond2, !dbg !35
```

As you can see, the first-non-phi instruction is a call for @llvm.dbg.value, and the debugloc is

```
!21 = !DILocation(line: 9, column: 7, scope: !6)
```

, which is a definition of 'ret' variable and outside of the scope of the basicblock itself. However, current implementation picks up this debugloc for the instructions created in SplitBlockPredecessors. This patch addresses this problem by picking up debugloc from the first-non-phi-non-dbg instruction.

Reviewers: dblaikie, samsonov, eugenis

Reviewed By: eugenis

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D29867

llvm-svn: 295106
2017-02-14 21:10:40 +00:00
Chandler Carruth b4d9a310d2 Make a test actually test what it set out to test.
This test seems to have largely been relying on asserts being tripped.
It had a very specific and somewhat uninteresting grep of the output,
but it never really did anything to cause SCEV to be preserved across
loop simplify, certainly not explicitly. And a later addition to it
actually added CHECK lines despite the test never running FileCheck.

Now we actually print SCEV before and after loop simplify to make sure
it is *changing* and being *updated*. Which seems to be much more likely
the point of the test.

llvm-svn: 291740
2017-01-12 03:49:07 +00:00
Michael Kuperstein 3ca147ea3d Preserve loop metadata when folding branches to a common destination.
Differential Revision: https://reviews.llvm.org/D27830

llvm-svn: 289992
2016-12-16 21:23:59 +00:00
Michael Zolotukhin 5020c9971b [LoopSimplify] Preserve LCSSA when removing edges from unreachable blocks.
This fixes PR30454.

llvm-svn: 287379
2016-11-18 21:01:12 +00:00
Florian Hahn 77382be56b [simplifycfg][loop-simplify] Preserve loop metadata in 2 transformations.
insertUniqueBackedgeBlock in lib/Transforms/Utils/LoopSimplify.cpp now
propagates existing llvm.loop metadata to newly the added backedge.

llvm::TryToSimplifyUncondBranchFromEmptyBlock in lib/Transforms/Utils/Local.cpp
now propagates existing llvm.loop metadata to the branch instructions in the
predecessor blocks of the empty block that is removed.

Differential Revision: https://reviews.llvm.org/D26495

llvm-svn: 287341
2016-11-18 13:12:07 +00:00
Michael Zolotukhin aae168f993 [LoopSimplify] Rebuild LCSSA for the inner loop after separating nested loops.
Summary:
This hopefully fixes PR28825. The problem now was that a value from the
original loop was used in a subloop, which became a sibling after separation.
While a subloop doesn't need an lcssa phi node, a sibling does, and that's
where we broke LCSSA. The most natural way to fix this now is to simply call
formLCSSA on the original loop: it'll do what we've been doing before plus
it'll cover situations described above.

I think we don't need to run formLCSSARecursively here, and we have an assert
to verify this (I've tried testing it on LLVM testsuite + SPECs). I'd be happy
to be corrected here though.

I also changed a run line in the test from '-lcssa -loop-unroll' to
'-lcssa -loop-simplify -indvars', because it exercises LCSSA
preservation to the same extent, but also makes less unrelated
transformation on the CFG, which makes it easier to verify.

Reviewers: chandlerc, sanjoy, silvas

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D23288

llvm-svn: 278173
2016-08-09 22:44:56 +00:00
Michael Zolotukhin 442b82f0eb Revert "Revert "[LoopSimplify] Fix updating LCSSA after separating nested loops.""
This reverts commit r277901. Reaaply the commit as it looks like it has
nothing to do with the bots failures.

llvm-svn: 277946
2016-08-07 01:56:54 +00:00
Michael Zolotukhin 09cf304ebc Revert "[LoopSimplify] Fix updating LCSSA after separating nested loops."
This reverts commit r277877.
Try to appease clang-x64-ninja-win7 buildbot.

llvm-svn: 277901
2016-08-06 01:48:51 +00:00
Michael Zolotukhin 4c65c3596a [LoopSimplify] Fix updating LCSSA after separating nested loops.
This fixes PR28825. The problem was that we only checked if a value from
a created inner loop is used in the outer loop, and fixed LCSSA for
them. But we missed to fixup LCSSA for values used in exits of the outer
loop.

llvm-svn: 277877
2016-08-05 21:52:58 +00:00
Michael Zolotukhin 6bc56d552a Revert "Revert r275883 and r275891. They seem to cause PR28608."
This reverts commit r276064, and thus reapplies r275891 and r275883 with
a fix for PR28608.

llvm-svn: 276077
2016-07-20 01:55:27 +00:00
Sean Silva 554efb28d2 Revert r275883 and r275891. They seem to cause PR28608.
Revert "[LoopSimplify] Update LCSSA after separating nested loops."

This reverts commit r275891.

Revert "[LCSSA] Post-process PHI-nodes created by SSAUpdate when constructing LCSSA form."

This reverts commit r275883.

llvm-svn: 276064
2016-07-19 23:54:29 +00:00
Michael Zolotukhin ea5b72825b [LoopSimplify] Update LCSSA after separating nested loops.
Summary:
Usually LCSSA survives this transformation, but in some cases (see
attached test) it doesn't: values from the original loop after
separating might be used from the outer loop. Before the transformation
it was the same loop, so LCSSA phis were not required.

This fixes PR28272.

Reviewers: sanjoy, hfinkel, chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D21665

llvm-svn: 275891
2016-07-18 19:44:19 +00:00
Davide Italiano cd96cfd8df [PM] Port LoopSimplify to the new pass manager.
While here move simplifyLoop() function to the new header, as
suggested by Chandler in the review.

Differential Revision:  http://reviews.llvm.org/D21404

llvm-svn: 274959
2016-07-09 03:03:01 +00:00
David Majnemer cbf614a93b Remove the ScalarReplAggregates pass
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM.  LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.

Differential Revision: http://reviews.llvm.org/D21316

llvm-svn: 272737
2016-06-15 00:19:09 +00:00
Michael Zolotukhin 8e7e76729d [LoopSimplify] Preserve LCSSA when merging exit blocks.
Summary:
This fixes PR26682. Also add LCSSA as a preserved pass to LoopSimplify,
that looks correct to me and allows to write a test for the issue.

Reviewers: chandlerc, bogner, sanjoy

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D21112

llvm-svn: 272224
2016-06-08 23:13:21 +00:00
Adrian Prantl 75819aedf6 [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.

Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.

Motivation
----------

Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.

We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.

Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.

http://reviews.llvm.org/D19034
<rdar://problem/25256815>

llvm-svn: 266446
2016-04-15 15:57:41 +00:00
Davide Italiano ea04026c13 [DebugInfo] Fix tests so that each subprogram belongs to a CU.
llvm-svn: 265490
2016-04-05 23:37:08 +00:00
Peter Collingbourne d4bff30370 DI: Reverse direction of subprogram -> function edge.
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.

For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.

This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.

Since this is an IR change, a bitcode upgrade has been provided.

Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.

Differential Revision: http://reviews.llvm.org/D14265

llvm-svn: 252219
2015-11-05 22:03:56 +00:00
Duncan P. N. Exon Smith 814b8e91c7 DI: Require subprogram definitions to be distinct
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'.  Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.

While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore.  Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node.  The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.

I updated almost all the IR with the following script:

    git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
    grep -v test/Bitcode |
    xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'

Likely some variant of would work for out-of-tree testcases.

llvm-svn: 246327
2015-08-28 20:26:49 +00:00
Alexey Samsonov b7724b95d8 [LoopSimplify] Set proper debug location in loop backedge blocks.
Set debug location for terminator instruction in loop backedge block
(which is an unconditional jump to loop header). We can't copy debug
location from original backedges, as there can be several of them,
with different debug info locations. So, we follow the approach of
SplitBlockPredecessors, and copy the debug info from first non-PHI
instruction in the header (i.e. destination block).

This is yet another change for PR23837.

llvm-svn: 240999
2015-06-29 21:30:14 +00:00
David Majnemer 7fddeccb8b Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

llvm-svn: 239940
2015-06-17 20:52:32 +00:00
Alexey Samsonov b7f02d371f [BasicBlockUtils] Set debug locations for instructions created in SplitBlockPredecessors.
Test Plan: regression test suite

Reviewers: eugenis, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10343

llvm-svn: 239438
2015-06-09 22:10:29 +00:00
Duncan P. N. Exon Smith 49e6a70fe3 Verifier: Call verifyModule() from llc and opt
Change `llc` and `opt` to run `verifyModule()`.  This ensures that we
check the full module before `FunctionPass::doInitialization()` ever
gets called (I was getting crashes in `DwarfDebug` instead of verifier
failures when testing a WIP patch that checks operands of compile
units).  In `opt`, also move up debug-info-stripping so that it still
runs before verification.

There was a fair bit of broken code that was sitting in tree.
Interestingly, some were cases of a `select` that referred to itself in
`-instcombine` tests (apparently an intermediate result).  I split them
off to `*-noverify.ll` tests with RUN lines like this:

    opt < %s -S -disable-verify -instcombine | opt -S | FileCheck %s

This avoids verifying the input file (so we can get the broken code into
`-instcombine), but still verifies the output with a second call to
`opt` (to verify that `-instcombine` will clean it up like it should).

llvm-svn: 233432
2015-03-27 22:04:28 +00:00
David Blaikie f72d05bc7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Philip Reames 9198b33b48 Teach SplitBlockPredecessors how to handle landingpad blocks.
Patch by: Igor Laevsky <igor@azulsystems.com>

"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."

Differential Revision: http://reviews.llvm.org/D7157

llvm-svn: 227390
2015-01-28 23:06:47 +00:00
Chad Rosier e668f61076 FileCheckize. NFC.
llvm-svn: 217698
2014-09-12 17:55:16 +00:00
Arnaud A. de Grandmaison de5ff26865 No need for those tests to go thru llvm-as and/or llvm-dis.
opt can handle them by itself.

llvm-svn: 209689
2014-05-27 22:03:28 +00:00
Chandler Carruth fc25854b09 [LPM] Switch LICM to actively use LCSSA in addition to preserving it.
Fixes PR18753 and PR18782.

This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.

However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.

It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.

llvm-svn: 201148
2014-02-11 12:52:27 +00:00
Chandler Carruth 8765cf702f [LPM] Make LCSSA a utility with a FunctionPass that applies it to all
the loops in a function, and teach LICM to work in the presance of
LCSSA.

Previously, LCSSA was a loop pass. That made passes requiring it also be
loop passes and unable to depend on function analysis passes easily. It
also caused outer loops to have a different "canonical" form from inner
loops during analysis. Instead, we go into LCSSA form and preserve it
through the loop pass manager run.

Note that this has the same problem as LoopSimplify that prevents
enabling its verification -- loop passes which run at the end of the loop
pass manager and don't preserve these are valid, but the subsequent loop
pass runs of outer loops that do preserve this pass trigger too much
verification and fail because the inner loop no longer verifies.

The other problem this exposed is that LICM was completely unable to
handle LCSSA form. It didn't preserve it and it actually would give up
on moving instructions in many cases when they were used by an LCSSA phi
node. I've taught LICM to support detecting LCSSA-form PHI nodes and to
hoist and sink around them. This may actually let LICM fire
significantly more because we put everything into LCSSA form to rotate
the loop before running LICM. =/ Now LICM should handle that fine and
preserve it correctly. The down side is that LICM has to require LCSSA
in order to preserve it. This is just a fact of life for LCSSA. It's
entirely possible we should completely remove LCSSA from the optimizer.

The test updates are essentially accomodating LCSSA phi nodes in the
output of LICM, and the fact that we now completely sink every
instruction in ashr-crash below the loop bodies prior to unrolling.

With this change, LCSSA is computed only three times in the pass
pipeline. One of them could be removed (and potentially a SCEV run and
a separate LoopPassManager entirely!) if we had a LoopPass variant of
InstCombine that ran InstCombine on the loop body but refused to combine
away LCSSA PHI nodes. Currently, this also prevents loop unrolling from
being in the same loop pass manager is rotate, LICM, and unswitch.

There is one thing that I *really* don't like -- preserving LCSSA in
LICM is quite expensive. We end up having to re-run LCSSA twice for some
loops after LICM runs because LICM can undo LCSSA both in the current
loop and the parent loop. I don't really see good solutions to this
other than to completely move away from LCSSA and using tools like
SSAUpdater instead.

llvm-svn: 200067
2014-01-25 04:07:24 +00:00
Andrew Trick 6796ab424c Reapply r198478 "Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things."
Now with a fix for PR18384: ValueHandleBase::ValueIsDeleted.

We need to invalidate SCEV's loop info when we delete a block, even if no values are hoisted.

llvm-svn: 198631
2014-01-06 19:43:14 +00:00
Alp Toker 5e9f3265f8 Revert "Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things."
This commit was the source of crasher PR18384:

While deleting: label %for.cond127
An asserting value handle still pointed to this value!
UNREACHABLE executed at llvm/lib/IR/Value.cpp:671!

Reverting to get the builders green, feel free to re-land after fixing up.
(Renato has a handy isolated repro if you need it.)

This reverts commit r198478.

llvm-svn: 198503
2014-01-04 17:00:45 +00:00
Andrew Trick aceac9746d Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things.
getSCEV for an ashr instruction creates an intermediate zext
expression when it truncates its operand.

The operand is initially inside the loop, so the narrow zext
expression has a non-loop-invariant loop disposition.

LoopSimplify then runs on an outer loop, hoists the ashr operand, and
properly invalidate the SCEVs that are mapped to value.

The SCEV expression for the ashr is now an AddRec with the hoisted
value as the now loop-invariant start value.

The LoopDisposition of this wide value was properly invalidated during
LoopSimplify.

However, if we later get the ashr SCEV again, we again try to create
the intermediate zext expression. We get the same SCEV that we did
earlier, and it is still cached because it was never mapped to a
Value. When we try to create a new AddRec we abort because we're using
the old non-loop-invariant LoopDisposition.

I don't have a solution for this other than to clear LoopDisposition
when LoopSimplify hoists things.

I think the long-term strategy should be to perform LoopSimplify on
all loops before computing SCEV and before running any loop opts on
individual loops. It's possible we may want to rerun LoopSimplify on
individual loops, but it should rarely do anything, so rarely require
invalidating SCEV.

llvm-svn: 198478
2014-01-04 05:52:49 +00:00