This is effectively re-committing the changes from:
rL347917 (D54640)
rL348195 (D55126)
...which were effectively reverted here:
rL348604
...because the code had a bug that could induce infinite looping
or eventual out-of-memory compilation.
The bug was that this code did not guard against transforming
opaque constants. More details are in the post-commit mailing
list thread for r347917. A reduced test for that is included
in the x86 bool-math.ll file. (I wasn't able to reduce a PPC
backend test for this, but it was almost the same pattern.)
Original commit message for r347917:
The motivating case for this is shown in:
https://bugs.llvm.org/show_bug.cgi?id=32023
and the corresponding rot16.ll regression tests.
Because x86 scalar shift amounts are i8 values, we can end up with trunc-binop-trunc
sequences that don't get folded in IR.
As the TODO comments suggest, there will be regressions if we extend this (for x86,
we mostly seem to be missing LEA opportunities, but there are likely vector folds
missing too). I think those should be considered existing bugs because this is the
same transform that we do as an IR canonicalization in instcombine. We just need
more tests to make those visible independent of this patch.
llvm-svn: 348706
These nodes should have two results. A real VT and a Glue. But this code would have returned Undef which would only be a single result. But we're in the single result version of getNode so these opcodes should never be seen by this function anyway.
llvm-svn: 348670
As discussed in the post-commit thread of r347917, this
transform is fighting with an existing transform causing
an infinite loop or out-of-memory, so this is effectively
reverting r347917 and its follow-up r348195 while we
investigate the bug.
llvm-svn: 348604
If this is not a valid way to assign an SDLoc, then we get this
wrong all over SDAG.
I don't know enough about the SDAG to explain this. IIUC, theoretically,
debug info is not supposed to affect codegen. But here it has clearly
affected 3 different targets, and the x86 change is an actual improvement.
llvm-svn: 348552
We shouldn't care about the debug location for a node that
we're creating, but attaching the root of the pattern should
be the best effort. (If this is not true, then we are doing
it wrong all over the SDAG).
This is no-functional-change-intended, and there are no
regression test diffs...and that's what I expected. But
there's a similar line above this diff, where those
assumptions apparently do not hold.
llvm-svn: 348550
This was probably organized as it was because bswap is a unary op.
But that's where the similarity to the other opcodes ends. We should
not limit this transform to scalars, and we should not try it if
either input has other uses. This is another step towards trying to
clean this whole function up to prevent it from causing infinite loops
and memory explosions.
Earlier commits in this series:
rL348501
rL348508
rL348518
llvm-svn: 348534
Unlike some of the folds in hoistLogicOpWithSameOpcodeHands()
above this shuffle transform, this has the expected hasOneUse()
checks in place.
llvm-svn: 348523
This patch introduces a new DAGCombiner rule to simplify concat_vectors nodes:
concat_vectors( bitcast (scalar_to_vector %A), UNDEF)
--> bitcast (scalar_to_vector %A)
This patch only partially addresses PR39257. In particular, it is enough to fix
one of the two problematic cases mentioned in PR39257. However, it is not enough
to fix the original test case posted by Craig; that particular case would
probably require a more complicated approach (and knowledge about used bits).
Before this patch, we used to generate the following code for function PR39257
(-mtriple=x86_64 , -mattr=+avx):
vmovsd (%rdi), %xmm0 # xmm0 = mem[0],zero
vxorps %xmm1, %xmm1, %xmm1
vblendps $3, %xmm0, %xmm1, %xmm0 # xmm0 = xmm0[0,1],xmm1[2,3]
vmovaps %ymm0, (%rsi)
vzeroupper
retq
Now we generate this:
vmovsd (%rdi), %xmm0 # xmm0 = mem[0],zero
vmovaps %ymm0, (%rsi)
vzeroupper
retq
As a side note: that VZEROUPPER is completely redundant...
I guess the vzeroupper insertion pass doesn't realize that the definition of
%xmm0 from vmovsd is already zeroing the upper half of %ymm0. Note that on
%-mcpu=btver2, we don't get that vzeroupper because pass vzeroupper insertion
%pass is disabled.
Differential Revision: https://reviews.llvm.org/D55274
llvm-svn: 348522
The PPC test with 2 extra uses seems clearly better by avoiding this transform.
With 1 extra use, we also prevent an extra register move (although that might
be an RA problem). The general rule should be to only make a change here if
it is always profitable. The x86 diffs are all neutral.
llvm-svn: 348518
The AVX512 diffs are neutral, but the bswap test shows a clear overreach in
hoistLogicOpWithSameOpcodeHands(). If we don't check for other uses, we can
increase the instruction count.
This could also fight with transforms trying to go in the opposite direction
and possibly blow up/infinite loop. This might be enough to solve the bug
noted here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181203/608593.html
I did not add the hasOneUse() checks to all opcodes because I see a perf
regression for at least one opcode. We may decide that's irrelevant in the
face of potential compiler crashing, but I'll see if I can salvage that first.
llvm-svn: 348508
Because we're potentially peeking through a bitcast in this transform,
we need to use overall bitwidths rather than number of elements to
determine when it's safe to proceed.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=39893
llvm-svn: 348383
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
Fix potential issue with the ISD::INSERT_VECTOR_ELT case tweaking the DemandedElts mask instead of using a local copy - so later uses of the mask use the tweaked version.....
Noticed while investigating adding zero/undef folding to SimplifyDemandedVectorElts and the altered DemandedElts mask was causing mismatches.
llvm-svn: 348348
There's a 64k limit on the number of SDNode operands, and some very large
functions with 64k or more loads can cause crashes due to this limit being hit
when a TokenFactor with this many operands is created. To fix this, create
sub-tokenfactors if we've exceeded the limit.
No test case as it requires a very large function.
rdar://45196621
Differential Revision: https://reviews.llvm.org/D55073
llvm-svn: 348324
PR17686 demonstrates that for some targets FP exceptions can fire in cases where the FP_TO_UINT is expanded using a FP_TO_SINT instruction.
The existing code converts both the inrange and outofrange cases using FP_TO_SINT and then selects the result, this patch changes this for 'strict' cases to pre-select the FP_TO_SINT input and the offset adjustment.
The X87 cases don't need the strict flag but generates much nicer code with it....
Differential Revision: https://reviews.llvm.org/D53794
llvm-svn: 348251
Add support for ISD::*_EXTEND and ISD::*_EXTEND_VECTOR_INREG opcodes.
The extra broadcast in trunc-subvector.ll will be fixed in an upcoming patch.
llvm-svn: 348246
This is the smallest vector enhancement I could find to D54640.
Here, we're allowing narrowing to only legal vector ops because we'll see
regressions without that. All of the test diffs are wins from what I can tell.
With AVX/AVX512, we can shrink ymm/zmm ops to xmm.
x86 vector multiplies are the problem case that we're avoiding due to the
patchwork ISA, and it's not clear to me if we can dance around those
regressions using TLI hooks or if we need preliminary patches to plug those
holes.
Differential Revision: https://reviews.llvm.org/D55126
llvm-svn: 348195
Summary:
Under -x86-experimental-vector-widening-legalization, fp_to_uint/fp_to_sint with a smaller than 128 bit vector type results are custom type legalized by promoting the result to a 128 bit vector by promoting the elements, inserting an assertzext/assertsext, then truncating back to original type. The truncate will be further legalizdd to a pack shuffle. In the case of a v8i8 result type, we'll end up with a v8i16 fp_to_sint. This will need to be further legalized during vector op legalization by promoting to v8i32 and then truncating again. Under avx2 this produces good code with two pack instructions, but Under avx512 this will result in a truncate instruction and a packuswb instruction. But we should be able to get away with a single truncate instruction.
The other option is to promote all the way to vXi32 result type during the first type legalization. But in some experimentation that seemed to require more work to produce good code for other configurations.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54836
llvm-svn: 348158
This makes the SDAG behavior consistent with the way we do this in IR.
It's possible that we were getting the wrong answer before. For example,
'xor undef, undef --> 0' but 'xor undef, C' --> undef.
But the most practical improvement is likely as shown in the tests here -
for FP, we were overconstraining undef lanes to NaN, and that can prevent
vector simplifications/narrowing (see D51553).
llvm-svn: 348090
This change prevents the crash noted in the post-commit comments
for rL347478 :
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181119/605166.html
We can't guarantee that an oversized shift amount is folded away,
so we have to check for it.
Note that I committed an incomplete fix for that crash with:
rL347502
But as discussed here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181126/605679.html
...we have to try harder.
So I'm not sure how to expose the bug now (and apparently no fuzzers have found
a way yet either).
On the plus side, we have discovered that we're missing real optimizations by
not simplifying nodes sooner, so the earlier fix still has value, and there's
likely more value in extending that so we can simplify more opcodes and simplify
when doing RAUW and/or putting nodes on the combiner worklist.
Differential Revision: https://reviews.llvm.org/D54954
llvm-svn: 348089
D52935 introduced the ability for SimplifyDemandedBits to call SimplifyDemandedVectorElts through BITCASTs if the demanded bit mask entirely covered the sub element.
This patch relaxes this to demanding an element if we need any bit from it.
Differential Revision: https://reviews.llvm.org/D54761
llvm-svn: 348073
Summary:
The VirtReg2Value mapping is crucial for getting consistently
reliable divergence information into the SelectionDAG. This
patch fixes a bunch of issues that lead to incorrect divergence
info and introduces tight assertions to ensure we don't regress:
1. VirtReg2Value is generated lazily; there were some cases where
a lookup was performed before all relevant virtual registers were
created, leading to an out-of-sync mapping. Those cases were:
- Complex code to lower formal arguments that generated CopyFromReg
nodes from live-in registers (fixed by never querying the mapping
for live-in registers).
- Code that generates CopyToReg for formal arguments that are used
outside the entry basic block (fixed by never querying the
mapping for Register nodes, which don't need the divergence info
anyway).
2. For complex values that are lowered to a sequence of registers,
all registers must be reflected in the VirtReg2Value mapping.
I am not adding any new tests, since I'm not actually aware of any
bugs that these problems are causing with trunk as-is. However,
I recently added a test case (in r346423) which fails when D53283 is
applied without this change. Also, the new assertions should provide
most of the effective test coverage.
There is one test change in sdwa-peephole.ll. The underlying issue
is that since the divergence info is now correct, the DAGISel will
select V_OR_B32 directly instead of S_OR_B32. This leads to an extra
COPY which affects the behavior of MachineLICM in a way that ends up
with the S_MOV_B32 with the constant in a different basic block than
the V_OR_B32, which is presumably what defeats the peephole.
Reviewers: alex-t, arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D54340
llvm-svn: 348049
Summary:
If a given liveness arg of STATEPOINT is at a fixed frame index
(e.g. a function argument passed on stack), prefer to use this
fixed location even the address is also in a register. If we use
the register it will generate a spill, which is not necessary
since the fixed frame index can be directly recorded in the stack
map.
Patch by Cherry Zhang <cherryyz@google.com>.
Reviewers: thanm, niravd, reames
Reviewed By: reames
Subscribers: cherryyz, reames, anna, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53889
llvm-svn: 347998
Summary:
This simplifies writing predicates for pattern fragments that are
automatically re-associated or commuted.
For example, a followup patch adds patterns for fragments of the form
(add (shl $x, $y), $z) to the AMDGPU backend. Such patterns are
automatically commuted to (add $z, (shl $x, $y)), which makes it basically
impossible to refer to $x, $y, and $z generically in the PredicateCode.
With this change, the PredicateCode can refer to $x, $y, and $z simply
as `Operands[i]`.
Test confirmed that there are no changes to any of the generated files
when building all (non-experimental) targets.
Change-Id: I61c00ace7eed42c1d4edc4c5351174b56b77a79c
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D51994
llvm-svn: 347992
For targets where i32 is not a legal type (e.g. 64-bit RISC-V),
LegalizeIntegerTypes must promote the result of ISD::FLT_ROUNDS_.
Differential Revision: https://reviews.llvm.org/D53820
llvm-svn: 347986
For targets where i32 is not a legal type (e.g. 64-bit RISC-V),
LegalizeIntegerTypes must promote the operands of ISD::PREFETCH.
Differential Revision: https://reviews.llvm.org/D53281
llvm-svn: 347980
For targets where i32 is not a legal type (e.g. 64-bit RISC-V),
LegalizeIntegerTypes must promote the operand.
Differential Revision: https://reviews.llvm.org/D53279
llvm-svn: 347978
DAGTypeLegalizer::PromoteSetCCOperands currently prefers to zero-extend
operands when it is able to do so. For some targets this is more expensive
than a sign-extension, which is also a valid choice. Introduce the
isSExtCheaperThanZExt hook and use it in the new SExtOrZExtPromotedInteger
helper. On RISC-V, we prefer sign-extension for FromTy == MVT::i32 and ToTy ==
MVT::i64, as it can be performed using a single instruction.
Differential Revision: https://reviews.llvm.org/D52978
llvm-svn: 347977
The motivating case for this is shown in:
https://bugs.llvm.org/show_bug.cgi?id=32023
and the corresponding rot16.ll regression tests.
Because x86 scalar shift amounts are i8 values, we can end up with trunc-binop-trunc
sequences that don't get folded in IR.
As the TODO comments suggest, there will be regressions if we extend this (for x86,
we mostly seem to be missing LEA opportunities, but there are likely vector folds
missing too). I think those should be considered existing bugs because this is the
same transform that we do as an IR canonicalization in instcombine. We just need
more tests to make those visible independent of this patch.
Differential Revision: https://reviews.llvm.org/D54640
llvm-svn: 347917
I believe we should be legalizing these with the rest of vector binary operations. If any custom lowering is required for these nodes, this will give the DAG combine between LegalizeVectorOps and LegalizeDAG to run on the custom code before constant build_vectors are lowered in LegalizeDAG.
I've moved MULHU/MULHS handling in AArch64 from Lowering to isel. Moving the lowering earlier caused build_vector+extract_subvector simplifications to kick in which made the generated code worse.
Differential Revision: https://reviews.llvm.org/D54276
llvm-svn: 347902
SplitVecOp_TruncateHelper tries to promote the result type while splitting FP_TO_SINT/UINT. It then concatenates the result and introduces a truncate to the original result type. But it does this without inserting the AssertZExt/AssertSExt that the regular result type promotion would insert. Nor does it turn FP_TO_UINT into FP_TO_SINT the way normal result type promotion for these operations does. This is bad on X86 which doesn't support FP_TO_SINT until AVX512.
This patch disables the use of SplitVecOp_TruncateHelper for these operations and just lets normal promotion handle it. I've tweaked a couple things in X86ISelLowering to avoid a few obvious regressions there. I believe all the changes on X86 are improvements. The other targets look neutral.
Differential Revision: https://reviews.llvm.org/D54906
llvm-svn: 347593
We might find a target specific node that needs to be unwrapped after we look through an add/or. Otherwise we get inconsistent results if one pointer is just X86WrapperRIP and the other is (add X86WrapperRIP, C)
Differential Revision: https://reviews.llvm.org/D54818
llvm-svn: 347591
This should likely be adjusted to limit this transform
further, but these diffs should be clear wins.
If we have blendv/conditional move, then we should assume
those are cheap ops. The loads become independent of the
compare, so those can be speculated before we need to use
the values in the blend/mov.
llvm-svn: 347526
rL347502 moved the null sibling, so we should group all of these
together. I'm not sure why these aren't methods of the SDValue
class itself, but that's another patch if that's possible.
llvm-svn: 347523
...and use them to avoid creating obviously undef values as
discussed in the post-commit thread for r347478.
The diffs in vector div/rem show that we were missing real
optimizations by creating bogus shift nodes.
llvm-svn: 347502
This code takes a truncate, fp_to_int, or int_to_fp with a legal result type and an input type that needs to be split and enlarges the elements in the result type before doing the split. Then inserts a follow up truncate or fp_round after concatenating the two halves back together.
But if the input type of the original op is being split on its way to ultimately being scalarized we're just going to end up building a vector from scalars and then truncating or rounding it in the vector register. Seems kind of silly to enlarge the result element type of the operation only to end up with scalar code and then building a vector with large elements only to make the elements smaller again in the vector register. Seems better to just try to get away producing smaller result types in the scalarized code.
The X86 test case that changes is a pretty contrived test case that exists because of a bug we used to have in our AVG matching code. I think the code is better now, but its not realistic anyway.
llvm-svn: 347482
SplitVecOp_TruncateHelper tries to introduce a multilevel truncate to avoid scalarization. But if splitting the result type would still be a legal type we don't need to do that.
The comment block at the top of the function implied that this was already implemented. I looked back through the history and it doesn't look to have ever been checked.
llvm-svn: 347479
We fail to canonicalize IR this way (prefer 'not' ops to arbitrary 'xor'),
but that would not matter without this patch because DAGCombiner was
reversing that transform. I think we need this transform in the backend
regardless of what happens in IR to catch cases where the shift-xor
is formed late from GEP or other ops.
https://rise4fun.com/Alive/NC1
Name: shl
Pre: (-1 << C2) == C1
%shl = shl i8 %x, C2
%r = xor i8 %shl, C1
=>
%not = xor i8 %x, -1
%r = shl i8 %not, C2
Name: shr
Pre: (-1 u>> C2) == C1
%sh = lshr i8 %x, C2
%r = xor i8 %sh, C1
=>
%not = xor i8 %x, -1
%r = lshr i8 %not, C2
https://bugs.llvm.org/show_bug.cgi?id=39657
llvm-svn: 347478