This patch makes InstrRefBasedLDV "safe" to work with DBG_VALUE_LISTs. It
doesn't actually interpret them, but it recognises that they specify
variable locations and avoids propagating false locations, which is better
than the current state. Observe the attached tes
* We avoid propagating DBG_VALUE_LISTs into successor blocks, as they're
not "currently" supported,
* We don't propagate other variable locations across DBG_VALUE_LISTs,
because we know that the variable location is terminated by the
DBG_VALUE_LIST.
Differential Revision: https://reviews.llvm.org/D108143
When calculating the name to display for inline namespaces, we have
custom logic to try to hide redundant inline namespaces from the
diagnostic. Calculating these redundancies requires performing a lookup
in the parent declaration context, but that lookup should not try to
look through transparent declaration contexts, like linkage
specifications. Instead, loop up the declaration context chain until we
find a non-transparent context and use that instead.
This fixes PR49954.
This patch removes an assertion, and adds a regression test showing why the
assertion is broken.
For context, LocIdx is a key/index number for machine locations, so that we
can describe locations as a single integer and ignore whether they're on
the stack, in registers or otherwise. Back when InstrRefBasedLDV was added,
I happened to bake in a "special" zero number for various reasons, which
Vedant identified as undesirable in this review comment:
https://reviews.llvm.org/D83047#inline-765495 . I subsequently removed that
special zero number, but it looks like I didn't delete this assertion at
the time, which assumes that a zero LocIdx is invalid.
The attached test shows that this assertion is reachable on valid code --
on x86 $rsp always gets the LocIdx number zero, and if you transfer a
variable value into it, InstrRefBasedLDV crashes on that assertion. The
code might be a bit wild to be storing variables to $rsp like that, however
we shouldn't crash on it.
Differential Revision: https://reviews.llvm.org/D108134
A couple of passes that are parameterized in new-PM used different
pass names (in cmd line interface) while using the same pass class
name. This patch updates the PassRegistry to model pass parameters
more properly using PASS_WITH_PARAMS.
Reason for the change is to ensure that we have a 1-1 mapping
between class name and pass name (when disregarding the params).
With a 1-1 mapping it is more obvious which pass name to use in
options such as -debug-only, -print-after etc.
The opt -passes syntax is changed for the following passes:
early-cse-memssa => early-cse<memssa>
post-inline-ee-instrument => ee-instrument<post-inline>
loop-extract-single => loop-extract<single>
lower-matrix-intrinsics-minimal => lower-matrix-intrinsics<minimal>
This patch is not updating pass names in docs/Passes.rst. Not quite
sure what the status is for that document (e.g. when it comes to
listing pass paramters). It is only loop-extract-single that is
mentioned in Passes.rst today, out of the passes mentioned above.
Differential Revision: https://reviews.llvm.org/D108362
basic_string and vector currently have a hard dependency on the compiled
library because they need to call __vector_base_common::__throw_xxx(),
which are externally instantiated in the compiled library. That makes
sense when exceptions are enabled (because we're trying to localize the
exception-throwing code to the compiled library), but it doesn't really
make sense when exceptions are disabled, and the __throw_xxx functions
are just calling abort() anyways.
This patch simply overrides the __throw_xxx() functions so that they
don't rely on the compiled library when exceptions are disabled.
Differential Revision: https://reviews.llvm.org/D108389
The purpose of __attribute__((disable_sanitizer_instrumentation)) is to
prevent all kinds of sanitizer instrumentation applied to a certain
function, Objective-C method, or global variable.
The no_sanitize(...) attribute drops instrumentation checks, but may
still insert code preventing false positive reports. In some cases
though (e.g. when building Linux kernel with -fsanitize=kernel-memory
or -fsanitize=thread) the users may want to avoid any kind of
instrumentation.
Differential Revision: https://reviews.llvm.org/D108029
The only thing that function should do as per it's semantic,
is to ensure that the switch's default is a block consisting only of
an `unreachable` terminator.
So let's just create such a block and update switch's default
to point to it. There should be no need for all this weird dance
around predecessors/successors.
This patch fixes an issue where RISCV's `findCommutedOpIndices` would
incorrectly return the pseudo `CommuteAnyOperandIndex` as a commutable
operand index, rather than fixing a specific index.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D108206
This reverts commit fd21d1e198.
The test added in this patch [1] is failing on Windows and causing the
Windows BuildBot [2] to fail. I don't see any obvious way to fix this,
so reverting in order to investigate.
[1] llvm-project/flang/test/Driver/output-paths.f90
[2] https://lab.llvm.org/buildbot/#/builders/172/builds/2077
In that case it is very likely that there will be a tag mismatch anyway.
We handle the case that the pointer belongs to neither of the allocators
by getting a nullptr from allocator.GetBlockBegin.
Reviewed By: hctim, eugenis
Differential Revision: https://reviews.llvm.org/D108383
These changes don't come under OMPD guard as it is a movement of existing code to capture parallel behavior correctly.
"Runtime Entry Points for OMPD" like "ompd_bp_parallel_begin" and "ompd_bp_parallel_begin" should be placed at the correct execution point for the debugging tool to access proper handles/data.
Without the below changes, in certain cases, debugging tool will pick the wrong parallel and task handle.
Reviewed By: @hbae
Differential Revision: https://reviews.llvm.org/D100366
C++ for OpenCL version 2021 and later are expected to consist of a
major version number only. Therefore, a different constructor for
`VersionTuple` needs to be called when reporting language version.
Differential Revision: https://reviews.llvm.org/D108379
This patch refactors the file generation API in Flang's frontend driver.
It improves the layering between `CreateDefaultOutputFile`,
`CreateOutputFile` (`CompilerInstance` methods) and their various
clients.
List of changes:
* Rename `CreateOutputFile` as `CreateOutputFileImpl` and make it
private. This method is an implementation detail.
* Instead of passing an `std::error_code` out parameter into
`CreateOutputFileImpl`, have it return Expected<>. This is a bit shorter
and more idiomatic LLVM.
* Make `CreateDefaultOutputFile` (which calls `CreateOutputFileImpl`)
issue an error when file creation fails. The error code from
`CreateOutputFileImpl` is used to generate a meaningful diagnostic
message.
* Remove error reporting from `PrintPreprocessedAction::ExecuteAction`.
This is only for cases when output file generation fails. This is
handled in `CreateDefaultOutputFile` instead (see the previous point).
* Inline `AddOutputFile` into its only caller,
`CreateDefaultOutputFile`.
* Switch from `lvm::buffer_ostream` to `llvm::buffer_unique_ostream>`
for non-seekable output streams. This simplifies the logic in the driver
and was introduced for this very reason in [1]
* Moke sure that the diagnostics from the prescanner when running `-E`
(`PrintPreprocessedAction::ExecuteAction`) are printed before the actual
output is generated.
* Update comments, add test.
[1] https://reviews.llvm.org/D93260
Differential Revision: https://reviews.llvm.org/D108390
Prevent SIFoldOperands from creating SALU instructions with a constant
and a frame index. Previously, only one operand was checked to be a
frame index, leading to too many constants when flat scratch is enabled
and stack offsets are large.
Differential Revision: https://reviews.llvm.org/D108368
This avoids pulling in all of them if only one of them is needed
(if builtins are built without -ffunction-sections), and matches how
the similar aliases for AEABI are set up.
Differential Revision: https://reviews.llvm.org/D107815
This patch allows target specific addr space in target builtins for HIP. It inserts implicit addr
space cast for non-generic pointer to generic pointer in general, and inserts implicit addr
space cast for generic to non-generic for target builtin arguments only.
It is NFC for non-HIP languages.
Differential Revision: https://reviews.llvm.org/D102405
The rounding during type conversion uses multiple conversions, selecting
between them to try to discover if rounding occurred. This appears to
not have been tested, since it would generate code of the form:
float convert_float_rtp(char x)
{
float r = convert_float(x);
char y = convert_char(y);
[...]
}
which will access uninitialised data. The idea appears to have been to
have done a char -> float -> char roundtrip in order to discover the
rounding, so do this.
Discovered by inspection.
Signed-off-by: Daniel Stone <daniels@collabora.com>
Reviewed By: jvesely
Differential Revision: https://reviews.llvm.org/D81999
This prevents the async methods (which shoud be overridden by subclasses) from
hiding the blocking helper methods, avoiding a lot of 'using MemoryAccess::...'
boilerplate.
Accepts a vector of (SymbolStringPtr, ExecutorAddress*) pairs, looks up all the
symbols, then writes their address to each of the corresponding
ExecutorAddresses.
This idiom (looking up and recording addresses into a specific set of variables)
is used in MachOPlatform and the (temporarily reverted) ELFNixPlatform, and is
likely to be used in other places in the near future, so wrapping it in a
utility function should save us some boilerplate.