Commit Graph

41 Commits

Author SHA1 Message Date
Mehdi Amini 0f9e6451a8 Defend early against operation created without a registered dialect
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D105961
2021-07-15 03:52:32 +00:00
Mehdi Amini 3e25ea709c Revert "Defend early against operation created without a registered dialect"
This reverts commit 58018858e8.

The Python bindings test are broken.
2021-07-15 03:31:44 +00:00
Mehdi Amini 58018858e8 Defend early against operation created without a registered dialect
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D105961
2021-07-15 03:02:52 +00:00
Butygin cd94f18ec1 [mlir] Pass AnalysisManager as optional parameter to analysis ctor, so it can request any other analysis as dependency
Differential Revision: https://reviews.llvm.org/D100274
2021-04-20 19:18:36 +03:00
Christian Sigg a1eb154421 [flang] Use mlir::OpState::operator->() to get to methods of mlir::Operation.
This is a preparation step to remove those methods from OpState.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D93194
2020-12-14 20:04:53 +01:00
River Riddle 65fcddff24 [mlir][BuiltinDialect] Resolve comments from D91571
* Move ops to a BuiltinOps.h
* Add file comments
2020-11-19 11:12:49 -08:00
River Riddle 73ca690df8 [mlir][NFC] Remove references to Module.h and Function.h
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.

Differential Revision: https://reviews.llvm.org/D91572
2020-11-17 00:55:47 -08:00
Rahul Joshi b7382ed3fe [MLIR] Extend Symbol verification to reject public symbol declarations.
- Extend the Symbol interface with `isDeclaration` to identify operations that declare
  a symbol as opposed to define it.
- Extend verification to disallow public declarations as per the discussion in
   https://llvm.discourse.group/t/rfc-symbol-definition-declaration-x-visibility-checks/2140
- Adopt the new interface for `FuncOp` and fix test and code to not have/create public
  function declarations.

Differential Revision: https://reviews.llvm.org/D91456
2020-11-16 16:05:32 -08:00
Mehdi Amini 008b9d97cb Make the implicit nesting behavior of the PassManager user-controllable and default to false
This is an error prone behavior, I frequently have ~20 min debugging sessions when I hit
an unexpected implicit nesting. This default makes the C++ API safer for users.

Depends On D90669

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D90671
2020-11-03 11:17:44 +00:00
Mehdi Amini e7021232e6 Remove global dialect registration
This has been deprecated for >1month now and removal was announced in:

https://llvm.discourse.group/t/rfc-revamp-dialect-registration/1559/11

Differential Revision: https://reviews.llvm.org/D86356
2020-10-24 00:35:55 +00:00
Mehdi Amini 6a72635881 Revert "Remove global dialect registration"
This reverts commit b22e2e4c6e.

Investigating broken builds
2020-10-23 21:26:48 +00:00
Mehdi Amini b22e2e4c6e Remove global dialect registration
This has been deprecated for >1month now and removal was announced in:

https://llvm.discourse.group/t/rfc-revamp-dialect-registration/1559/11

Differential Revision: https://reviews.llvm.org/D86356
2020-10-23 20:41:44 +00:00
Mehdi Amini 1284dc34ab Use an Identifier instead of an OperationName internally for OpPassManager identification (NFC)
This allows to defers the check for traits to the execution instead of forcing it on the pipeline creation.
In particular, this is making our pipeline creation tolerant to dialects not being loaded in the context yet.

Reviewed By: rriddle, GMNGeoffrey

Differential Revision: https://reviews.llvm.org/D86915
2020-09-02 21:46:05 +00:00
Mehdi Amini c39c21610d Rename AnalysisManager::slice in AnalysisManager::nest (NFC)
The naming wasn't reflecting the intent of this API, "nest" is aligning
it with the pass manager API.
2020-08-28 20:41:07 +00:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Rahul Joshi 9a4b30cf84 [MLIR] Add support for defining and using Op specific analysis
- Add variants of getAnalysis() and friends that operate on a specific derived
  operation types.
- Add OpPassManager::getAnalysis() to always call the base getAnalysis() with OpT.
- With this, an OperationPass can call getAnalysis<> using an analysis type that
  is generic (works on Operation *) or specific to the OpT for the pass. Anything
  else will fail to compile.
- Extend AnalysisManager unit test to test this, and add a new PassManager unit
  test to test this functionality in the context of an OperationPass.

Differential Revision: https://reviews.llvm.org/D84897
2020-08-17 09:00:47 -07:00
Mehdi Amini 25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini 2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
Stephen Neuendorffer 798e661567 Revert "[MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries."
This reverts commit 7a6c689771.
This breaks the build with cmake 3.13.4, but succeeds with cmake 3.15.3
2020-02-29 11:52:08 -08:00
Stephen Neuendorffer 7a6c689771 [MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries.
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used.  This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call.  This is preparation for
properly dealing with creating libMLIR.so as well.

Differential Revision: https://reviews.llvm.org/D74864
2020-02-29 10:47:26 -08:00
Stephen Neuendorffer dc1056a3f1 Revert "[MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries."
This reverts commit 2f265e3528.
2020-02-28 14:13:30 -08:00
Stephen Neuendorffer 2f265e3528 [MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries.
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used.  This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call.  This is preparation for
properly dealing with creating libMLIR.so as well.

Differential Revision: https://reviews.llvm.org/D74864
2020-02-28 11:35:17 -08:00
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
Mehdi Amini 56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
River Riddle 4741ec6af0 Allow analyses to provide a hook 'isInvalidated' to determine if they are truly invalidated.
The hook has the following form:
*   `bool isInvalidated(const AnalysisManager::PreservedAnalyses &)`

Given a preserved analysis set, the analysis returns true if it should truly be
invalidated. This allows for more fine-tuned invalidation in cases where an
analysis wasn't explicitly marked preserved, but may be preserved(or
invalidated) based upon other properties; such as analyses sets.

PiperOrigin-RevId: 283582889
2019-12-03 11:14:20 -08:00
River Riddle 29099e03ce Generalize the analysis manager framework to work on any operation at any nesting.
The pass manager is moving towards being able to run on operations at arbitrary nesting. An operation may have both parent and child operations, and the AnalysisManager must be able to handle this generalization. The AnalysisManager class now contains generic 'getCachedParentAnalysis' and 'getChildAnalysis/getCachedChildAnalysis' functions to query analyses on parent/child operations. This removes the hard coded nesting relationship between Module/Function.

PiperOrigin-RevId: 266003636
2019-08-28 15:11:17 -07:00
River Riddle fec20e590f NFC: Rename Module to ModuleOp.
Module is a legacy name that only exists as a typedef of ModuleOp.

PiperOrigin-RevId: 257427248
2019-07-10 10:11:21 -07:00
River Riddle 6b6dc59f30 Update ModuleOp::create(...) to take a Location instead of a context.
This allows for giving a Module a more interesting location than 'Unknown'.

PiperOrigin-RevId: 257310117
2019-07-10 10:11:00 -07:00
River Riddle 8c44367891 NFC: Rename Function to FuncOp.
PiperOrigin-RevId: 257293379
2019-07-10 10:10:53 -07:00
River Riddle 206e55cc16 NFC: Refactor Module to be value typed.
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.

PiperOrigin-RevId: 256196193
2019-07-02 16:43:36 -07:00
River Riddle 54cd6a7e97 NFC: Refactor Function to be value typed.
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).

PiperOrigin-RevId: 255983022
2019-07-01 11:39:00 -07:00
Jacques Pienaar 1273af232c Add build files and update README.
* Add initial version of build files;
    * Update README with instructions to download and build MLIR from github;

--

PiperOrigin-RevId: 241102092
2019-03-30 11:23:22 -07:00
River Riddle 2d2b40bce5 Add basic infrastructure for instrumenting pass execution and analysis computation. A virtual class, PassInstrumentation, is provided to allow for different parts of the pass manager infrastructure. The currently available hooks allow for instrumenting:
* before/after pass execution
* after a pass fails
* before/after an analysis is computed

After getting this infrastructure in place, we can start providing common developer utilities like pass timing, IR printing after pass execution, etc.

PiperOrigin-RevId: 237709692
2019-03-29 17:10:06 -07:00
River Riddle d43f630de8 NFC: Remove 'Result' from the analysis manager api to better reflect the implementation. There is no distinction between analysis computation and result.
PiperOrigin-RevId: 237093101
2019-03-29 17:02:12 -07:00
River Riddle 1d87b62afe Add support for preserving specific analyses in the analysis manager. Passes can now preserve specific analyses via 'markAnalysesPreserved'.
Example:

markAnalysesPreserved<DominanceInfo>();
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();

PiperOrigin-RevId: 237081454
2019-03-29 17:01:41 -07:00