the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
llvm-svn: 83297
instead of cloning and RAUWing it.
- Make AbstractTypeUser a friend of Value so that it can offer
its subclasses a way to update a Value's type in place. This
is better than a universally visible setType method on Value,
and it's sufficient for the immediate need.
- Eliminate the constant "convert" functions. This eliminates a
lot of logic duplication, and fixes a complicated bug where a
constant can't actually be cloned during the type refinement
process because some of the types that its folder needs are
half-destroyed, being in the middle of refinement themselves.
- Move the getValType functions from being static overloaded
functions in Constants.cpp to be members of class template
specializations in ConstantsContext.h. This means that the
code ends up getting instantiated twice, however it also
makes it possible to eliminate all "convert" functions, so
it's not a big net code size increase. And if desired, the
duplicate instantiations could be eliminated with some
reorganization.
llvm-svn: 81861
how to fold notionally-out-of-bounds array getelementptr indices instead
of just doing these in lib/Analysis/ConstantFolding.cpp, because it can
be done in a fairly general way without TargetData, and because not all
constants are visited by lib/Analysis/ConstantFolding.cpp. This enables
more constant folding.
Also, set the "inbounds" flag when the getelementptr indices are
one-past-the-end.
llvm-svn: 81483
within the notional bounds of the static type of the getelementptr (which
is not the same as "inbounds") from GlobalOpt into a utility routine,
and use it in ConstantFold.cpp to check whether there are any mis-behaved
indices.
llvm-svn: 81478
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
llvm-svn: 80998
and exact flags. Because ConstantExprs are uniqued, creating an
expression with this flag causes all expressions with the same operands
to have the same flag, which may not be safe. Add, sub, mul, and sdiv
ConstantExprs are usually folded anyway, so the main interesting flag
here is inbounds, and the constant folder already knows how to set the
inbounds flag automatically in most cases, so there isn't an urgent need
for the API support.
This can be reconsidered in the future, but for now just removing these
API bits eliminates a source of potential trouble with little downside.
llvm-svn: 80959
Use CallbackVH, instead of WeakVH, to hold MDNode elements.
Use FoldingSetNode to unique MDNodes in a context.
Use CallbackVH hooks to update context's MDNodeSet appropriately.
llvm-svn: 80868
Constant::getRelocationInfo(), which has a much simpler
to use API. It still should not be part of libvmcore, but
is better than it was. Also teach it to be smart about
hidden visibility.
llvm-svn: 76700
Getelementptrs that are defined to wrap are virtually useless to
optimization, and getelementptrs that are undefined on any kind
of overflow are too restrictive -- it's difficult to ensure that
all intermediate addresses are within bounds. I'm going to take
a different approach.
Remove a few optimizations that depended on this flag.
llvm-svn: 76437
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
This involves temporarily hard wiring some parts to use the global context. This isn't ideal, but it's
the only way I could figure out to make this process vaguely incremental.
llvm-svn: 75445
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
create separate recursive mutexes for each value map. The recursive-ness fixes the double-acquiring issue, which having one per ValueMap
lets us continue to maintain some concurrency.
llvm-svn: 73801
gets involved, and we end up trying to recursively acquire a writer lock. The fix for this is slightly horrible,
and involves passing a boolean "locked" parameter around in Constants.cpp, but it's better than having locked and
unlocked versions of most of the code.
llvm-svn: 73790
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
type as a target independent constant expression. I confess
that I didn't check that this method works as intended (though
I did test the equivalent hand-written IR a little). But what
could possibly go wrong!
llvm-svn: 72213
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
llvm-svn: 68420
unneeded bitcast is requested. This is common for frontends who just unconditionally
cast even if the target is often the right type already. THis prevents going into
getFoldedCast which switches on the opcode and does a bunch of other stuff before
doing the same opzn.
llvm-svn: 67435