This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
LinalgDistribution options to allow more general distributions.
Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.
Differential Revision: https://reviews.llvm.org/D86095
There should be an equivalent std.floor op to std.ceil. This includes
matching lowerings for SPIRV, NVVM, ROCDL, and LLVM.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85940
Create a reduction pass that accepts an optimization pass as argument
and only replaces the golden module in the pipeline if the output of the
optimization pass is smaller than the input and still exhibits the
interesting behavior.
Add a -test-pass option to test individual passes in the MLIR Reduce
tool.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D84783
This patch adds more op/type conversion support
necessary for `spirv-runner`:
- EntryPoint/ExecutionMode: currently removed since we assume
having only one kernel function in the kernel module.
- StorageBuffer storage class is now supported. We are not
concerned with multithreading so this is fine for now.
- Type conversion enhanced, now regular offsets and strides
for structs and arrays are supported (based on
`VulkanLayoutUtils`).
- Support of `spc.AccessChain` that is modelled with GEP op
in LLVM dialect.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86109
When the operand to the linalg.tensor_reshape op is a splat constant,
the result can be replaced with a splat constant of the same value but
different type.
Differential Revision: https://reviews.llvm.org/D86117
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86094
According to the LLVM Language Reference, 'cmpxchg' accepts integer or pointer
types. Several MLIR tests were using it with floats as it appears possible to
programmatically construct and print such an instruction, but it cannot be
parsed back. Use integers instead.
Depends On D85899
Reviewed By: flaub, rriddle
Differential Revision: https://reviews.llvm.org/D85900
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
The convresion of memref cast operaitons from the Standard dialect to the LLVM
dialect has been emitting bitcasts from a struct type to itself. Beyond being
useless, such casts are invalid as bitcast does not operate on aggregate types.
This kept working by accident because LLVM IR bitcast construction API skips
the construction if types are equal before it verifies that the types are
acceptable in a bitcast. Do not emit such bitcasts, the memref cast that only
adds/erases size information is in fact a noop on the current descriptor as it
always contains dynamic values for all sizes.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D85899
Masked loading/storing in various forms can be optimized
into simpler memory operations when the mask is all true
or all false. Note that the backend does similar optimizations
but doing this early may expose more opportunities for further
optimizations. This further prepares progressively lowering
transfer read and write into 1-D memory operations.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D85769
This exercises the corner case that was fixed in
https://reviews.llvm.org/rG8979a9cdf226066196f1710903d13492e6929563.
The bug can be reproduced when there is a @callee with a custom type argument and @caller has a producer of this argument passed to the @callee.
Example:
func @callee(!test.test_type) -> i32
func @caller() -> i32 {
%arg = "test.type_producer"() : () -> !test.test_type
%out = call @callee(%arg) : (!test.test_type) -> i32
return %out : i32
}
Even though there is a type conversion for !test.test_type, the output IR (before the fix) contained a DialectCastOp:
module {
llvm.func @callee(!llvm.ptr<i8>) -> !llvm.i32
llvm.func @caller() -> !llvm.i32 {
%0 = llvm.mlir.null : !llvm.ptr<i8>
%1 = llvm.mlir.cast %0 : !llvm.ptr<i8> to !test.test_type
%2 = llvm.call @callee(%1) : (!test.test_type) -> !llvm.i32
llvm.return %2 : !llvm.i32
}
}
instead of
module {
llvm.func @callee(!llvm.ptr<i8>) -> !llvm.i32
llvm.func @caller() -> !llvm.i32 {
%0 = llvm.mlir.null : !llvm.ptr<i8>
%1 = llvm.call @callee(%0) : (!llvm.ptr<i8>) -> !llvm.i32
llvm.return %1 : !llvm.i32
}
}
Differential Revision: https://reviews.llvm.org/D85914
-- This commit handles the returnOp in memref map layout normalization.
-- An initial filter is applied on FuncOps which helps us know which functions can be
a suitable candidate for memref normalization which doesn't lead to invalid IR.
-- Handles memref map normalization for external function assuming the external function
is normalizable.
Differential Revision: https://reviews.llvm.org/D85226
Provide printing functions for most IR objects in C API (except Region that
does not have a `print` function, and Module that is expected to be printed as
Operation instead). The printing is based on a callback that is called with
chunks of the string representation and forwarded user-defined data.
Reviewed By: stellaraccident, Jing, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85748
This patch adds the translation of the proc_bind clause in a
parallel operation.
The values that can be specified for the proc_bind clause are
specified in the OMP.td tablegen file in the llvm/Frontend/OpenMP
directory. From this single source of truth enumeration for
proc_bind is generated in llvm and mlir (used in specification of
the parallel Operation in the OpenMP dialect). A function to return
the enum value from the string representation is also generated.
A new header file (DirectiveEmitter.h) containing definitions of
classes directive, clause, clauseval etc is created so that it can
be used in mlir as well.
Reviewers: clementval, jdoerfert, DavidTruby
Differential Revision: https://reviews.llvm.org/D84347
Inital conversion of `spv._address_of` and `spv.globalVariable`.
In SPIR-V, the global returns a pointer, whereas in LLVM dialect
the global holds an actual value. This difference is handled by
`spv._address_of` and `llvm.mlir.addressof`ops that both return
a pointer. Moreover, only current invocation is in conversion's
scope.
Reviewed By: antiagainst, mravishankar
Differential Revision: https://reviews.llvm.org/D84626
Now that LLVM dialect types are implemented directly in the dialect, we can use
MLIR hooks for verifying type construction invariants. Implement the verifiers
and use them in the parser.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85663
Linalg to processors.
This changes adds infrastructure to distribute the loops generated in
Linalg to processors at the time of generation. This addresses use
case where the instantiation of loop is done just to distribute
them. The option to distribute is added to TilingOptions for now and
will allow specifying the distribution as a transformation option,
just like tiling and promotion are specified as options.
Differential Revision: https://reviews.llvm.org/D85147
- Fix ODS framework to suppress build methods that infer result types and are
ambiguous with collective variants. This applies to operations with a single variadic
inputs whose result types can be inferred.
- Extended OpBuildGenTest to test these kinds of ops.
Differential Revision: https://reviews.llvm.org/D85060
This diff attempts to resolve the TODO in `getOpIndexSet` (formerly
known as `getInstIndexSet`), which states "Add support to handle IfInsts
surronding `op`".
Major changes in this diff:
1. Overload `getIndexSet`. The overloaded version considers both
`AffineForOp` and `AffineIfOp`.
2. The `getInstIndexSet` is updated accordingly: its name is changed to
`getOpIndexSet` and its implementation is based on a new API `getIVs`
instead of `getLoopIVs`.
3. Add `addAffineIfOpDomain` to `FlatAffineConstraints`, which extracts
new constraints from the integer set of `AffineIfOp` and merges it to
the current constraint system.
4. Update how a `Value` is determined as dim or symbol for
`ValuePositionMap` in `buildDimAndSymbolPositionMaps`.
Differential Revision: https://reviews.llvm.org/D84698
This patch also fixes a minor issue that shape.rank should allow
returning !shape.size. The dialect doc has such an example for
shape.rank.
Differential Revision: https://reviews.llvm.org/D85556
This reverts commit 9f24640b7e.
We hit some dead-locks on thread exit in some configurations: TLS exit handler is taking a lock.
Temporarily reverting this change as we're debugging what is going on.
This revision aims to provide a new API, `checkTilingLegality`, to
verify that the loop tiling result still satisifes the dependence
constraints of the original loop nest.
Previously, there was no check for the validity of tiling. For instance:
```
func @diagonal_dependence() {
%A = alloc() : memref<64x64xf32>
affine.for %i = 0 to 64 {
affine.for %j = 0 to 64 {
%0 = affine.load %A[%j, %i] : memref<64x64xf32>
%1 = affine.load %A[%i, %j - 1] : memref<64x64xf32>
%2 = addf %0, %1 : f32
affine.store %2, %A[%i, %j] : memref<64x64xf32>
}
}
return
}
```
You can find more information about this example from the Section 3.11
of [1].
In general, there are three types of dependences here: two flow
dependences, one in direction `(i, j) = (0, 1)` (notation that depicts a
vector in the 2D iteration space), one in `(i, j) = (1, -1)`; and one
anti dependence in the direction `(-1, 1)`.
Since two of them are along the diagonal in opposite directions, the
default tiling method in `affine`, which tiles the iteration space into
rectangles, will violate the legality condition proposed by Irigoin and
Triolet [2]. [2] implies two tiles cannot depend on each other, while in
the `affine` tiling case, two rectangles along the same diagonal are
indeed dependent, which simply violates the rule.
This diff attempts to put together a validator that checks whether the
rule from [2] is violated or not when applying the default tiling method
in `affine`.
The canonical way to perform such validation is by examining the effect
from adding the constraint from Irigoin and Triolet to the existing
dependence constraints.
Since we already have the prior knowlegde that `affine` tiles in a
hyper-rectangular way, and the resulting tiles will be scheduled in the
same order as their respective loop indices, we can simplify the
solution to just checking whether all dependence components are
non-negative along the tiling dimensions.
We put this algorithm into a new API called `checkTilingLegality` under
`LoopTiling.cpp`. This function iterates every `load`/`store` pair, and
if there is any dependence between them, we get the dependence component
and check whether it has any negative component. This function returns
`failure` if the legality condition is violated.
[1]. Bondhugula, Uday. Effective Automatic parallelization and locality optimization using the Polyhedral model. https://dl.acm.org/doi/book/10.5555/1559029
[2]. Irigoin, F. and Triolet, R. Supernode Partitioning. https://dl.acm.org/doi/10.1145/73560.73588
Differential Revision: https://reviews.llvm.org/D84882
Implement the Reduction Tree Pass framework as part of the MLIR Reduce tool. This is a parametarizable pass that allows for the implementation of custom reductions passes in the tool.
Implement the FunctionReducer class as an example of a Reducer class parameter for the instantiation of a Reduction Tree Pass.
Create a pass pipeline with a Reduction Tree Pass with the FunctionReducer class specified as parameter.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D83969
This also beefs up the test coverage:
- Make unranked memref testing consistent with ranked memrefs.
- Add testing for the invalid element type cases.
This is not quite NFC: index types are now allowed in unranked memrefs.
Differential Revision: https://reviews.llvm.org/D85541
This simple patch translates the num_threads and if clauses of the parallel
operation. Also includes test cases.
A minor change was made to parsing of the if clause to parse AnyType and
return the parsed type. Updates to test cases also.
Reviewed by: SouraVX
Differential Revision: https://reviews.llvm.org/D84798
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
This class allows for defining thread local objects that have a set non-static lifetime. This internals of the cache use a static thread_local map between the various different non-static objects and the desired value type. When a non-static object destructs, it simply nulls out the entry in the static map. This will leave an entry in the map, but erase any of the data for the associated value. The current use cases for this are in the MLIRContext, meaning that the number of items in the static map is ~1-2 which aren't particularly costly enough to warrant the complexity of pruning. If a use case arises that requires pruning of the map, the functionality can be added.
This is especially useful in the context of MLIR for implementing thread-local caching of context level objects that would otherwise have very high lock contention. This revision adds a thread local cache in the MLIRContext for attributes, identifiers, and types to reduce some of the locking burden. This led to a speedup of several hundred miliseconds when compiling a conversion pass on a very large mlir module(>300K operations).
Differential Revision: https://reviews.llvm.org/D82597