Summary:
Introduce the ShadowCallStack function attribute. It's added to
functions compiled with -fsanitize=shadow-call-stack in order to mark
functions to be instrumented by a ShadowCallStack pass to be submitted
in a separate change.
Reviewers: pcc, kcc, kubamracek
Reviewed By: pcc, kcc
Subscribers: cryptoad, mehdi_amini, javed.absar, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44800
llvm-svn: 329108
We were inconsistent, sometimes even within a single sentence.
The consensus seems clear that the FP we're looking for is
spelled "floating-point". Without the hyphen, it's a
"surprisingly fine" jazz album.
llvm-svn: 328098
Follow-up for D44216: add a section and examples to describe the FP env.
Also, add pointers from the FP instructions to this new section to reduce
bloat.
Differential Revision: https://reviews.llvm.org/D44318
llvm-svn: 327998
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
Now the Windows mangling modes ('w' and 'x') do not do any mangling for
symbols starting with '?'. This means that clang can stop adding the
hideous '\01' leading escape. This means LLVM debug logs are less likely
to contain ASCII escape characters and it will be easier to copy and
paste MS symbol names from IR.
Finally.
For non-Windows platforms, names starting with '?' still get IR
mangling, so once clang stops escaping MS C++ names, we will get extra
'_' prefixing on MachO. That's fine, since it is currently impossible to
construct a triple that uses the MS C++ ABI in clang and emits macho
object files.
Differential Revision: https://reviews.llvm.org/D7775
llvm-svn: 327734
Also, fix the undef vs. UB example to use 'sdiv' because that can trigger div-by-zero UB.
The existing text for the constrained intrinsics says:
"By default, LLVM optimization passes assume that the rounding mode is round-to-nearest
and that floating point exceptions will not be monitored. Constrained FP intrinsics are
used to support non-default rounding modes and accurately preserve exception behavior
without compromising LLVM’s ability to optimize FP code when the default behavior is
used."
...so the additional text with the normal FP opcodes should make the different modes
clear.
Differential Revision: https://reviews.llvm.org/D44216
llvm-svn: 327138
Summary:
This adds initial support for letting targets specify which address
spaces their functions should reside in by default.
If a function is created by a frontend, it will get the default address space specified in the DataLayout, unless the frontend explicitly uses a more general `llvm::Function` constructor. Function address spaces will become a part of the bitcode and textual IR forms, as we do not have access to a data layout whilst parsing LL.
It will be possible to write IR that explicitly has `addrspace(n)` on a function. In this case, the function will reside in the specified space, ignoring the default in the DL.
This is the first step towards placing functions into the correct
address space for Harvard architectures.
Full patchset
* Add program address space to data layout D37052
* Require address space to be specified when creating functions D37054
* [clang] Require address space to be specified when creating functions D37057
Reviewers: pcc, arsenm, kparzysz, hfinkel, theraven
Reviewed By: theraven
Subscribers: arichardson, simoncook, rengolin, wdng, uabelho, bjope, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D37052
llvm-svn: 325479
Summary:
In LLVM, 't' selects a floating-point/SIMD register and only supports
32-bit values. This is appropriately documented in the LLVM Language
Reference Manual. However, this behaviour diverges from that of GCC, where
't' selects the s0-s31 registers and its qX and dX variants depending on
additional operand modifiers (q/P).
For example, the following C code:
#include <arm_neon.h>
float32x4_t a, b, x;
asm("vadd.f32 %0, %1, %2" : "=t" (x) : "t" (a), "t" (b))
results in the following assembly if compiled with GCC:
vadd.f32 s0, s0, s1
whereas LLVM will show "error: couldn't allocate output register for
constraint 't'", since a, b, x are 128-bit variables, not 32-bit.
This patch extends the use of 't' to mean that of GCC, thus allowing
selection of the lower Q vector regs and their D/S variants. For example,
the earlier code will now compile as:
vadd.f32 q0, q0, q1
This behaviour still differs from that of GCC but I think it is actually
more correct, since LLVM picks up the right register type based on the
datatype of x, while GCC would need an extra operand modifier to achieve
the same result, as follows:
asm("vadd.f32 %q0, %q1, %q2" : "=t" (x) : "t" (a), "t" (b))
Since this is only an extension of functionality, existing code should not
be affected by this change. Note that operand modifiers q/P are already
supported by LLVM, so this patch should suffice to support inline
assembly with constraint 't' originally built for GCC.
Reviewers: grosbach, rengolin
Reviewed By: rengolin
Subscribers: rogfer01, efriedma, olista01, aemerson, javed.absar, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42962
llvm-svn: 325244
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
This clarification was suggested by @efriedma in D41335, which uses this
behavior to inline musttail calls with varargs.
Reviewers: hfinkel, efriedma, rnk
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D41861
llvm-svn: 322786
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
As noted in D40594, the frem instruction corresponds to fmod() except that it can't set errno.
I modified the text that we currently use for intrinsics that map to libm functions and applied
it to frem.
Differential Revision: https://reviews.llvm.org/D40629
llvm-svn: 319437
llvm.invariant.group.barrier may accept pointers to arbitrary address space.
This patch let it accept pointers to i8 in any address space and returns
pointer to i8 in the same address space.
Differential Revision: https://reviews.llvm.org/D39973
llvm-svn: 318413
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
It is currently not possible to build the documentation with cmake and
the same version of Sphinx (1.5.1) used to generate the public facing
documentation on llvm.org. When code blocks cannot be parsed by
Pygments, it generates a warning which is treated as an error.
In addition to being annoying and confusing for developers, this
needlessly increases the bar for newcomers that want to get involved.
This patch removes the language specifier from the affected block. The
result is the same as when parsing fails: the block are not highlighted.
llvm-svn: 317472
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
llvm-svn: 317278
Currently we do not represent runtime preemption in the IR, which has several
drawbacks:
1) The semantics of GlobalValues differ depending on the object file format
you are targeting (as well as the relocation-model and -fPIE value).
2) We have no way of disabling inlining of run time interposable functions,
since in the IR we only know if a function is link-time interposable.
Because of this llvm cannot support elf-interposition semantics.
3) In LTO builds of executables we will have extra knowledge that a symbol
resolved to a local definition and can't be preemptable, but have no way to
propagate that knowledge through the compiler.
This patch adds preemptability specifiers to the IR with the following meaning:
dso_local --> means the compiler may assume the symbol will resolve to a
definition within the current linkage unit and the symbol may be accessed
directly even if the definition is not within this compilation unit.
dso_preemptable --> means that the compiler must assume the GlobalValue may be
replaced with a definition from outside the current linkage unit at runtime.
To ease transitioning dso_preemptable is treated as a 'default' in that
low-level codegen will still do the same checks it did previously to see if a
symbol should be accessed indirectly. Eventually when IR producers emit the
specifiers on all Globalvalues we can change dso_preemptable to mean 'always
access indirectly', and remove the current logic.
Differential Revision: https://reviews.llvm.org/D20217
llvm-svn: 316668
Summary:
When describing trunc/zext/sext/ptrtoint/inttoptr in the chapter
about Constant Expressions we now simply refer to the Instruction
Reference. As far as I know there are no difference when it comes
to the semantics and the argument constraints. The only difference
is that the syntax is slighly different for the constant expressions,
regarding the use of parenthesis in constant expressions.
Referring to the Instruction Reference is the same solution as
already used for several other operations, such as bitcast.
The main goal was to add information that vector types are allowed
also in trunc/zext/sext/ptrtoint/inttoptr constant expressions.
That was not explicitly mentioned earlier, and resulted in some
questions in the review of https://reviews.llvm.org/D38546
Reviewers: efriedma, majnemer
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39165
llvm-svn: 316429
This patch adds a new kind of metadata that indicates the possible callees of
indirect calls.
Differential Revision: https://reviews.llvm.org/D37354
llvm-svn: 315944
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
Summary:
Add the documentation for the new module flag behavior. The new
ModFlagBehavior is added in r303590.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36557
llvm-svn: 310926
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memset intrinsic. This intrinsic is essentially memset with the implementation requirement that all stores used for the assignment are done with unordered-atomic stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: jfb, dschuff, sbc100, jgravelle-google, aheejin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D34885
llvm-svn: 307854