Commit Graph

20 Commits

Author SHA1 Message Date
Benjamin Kramer 2a8bef8769 Do a sweep over move ctors and remove those that are identical to the default.
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.

No functionality change intended.

llvm-svn: 284721
2016-10-20 12:20:28 +00:00
Oliver Stannard 4df1cc0b00 [ARM] Don't convert switches to lookup tables of pointers with ROPI/RWPI
With the ROPI and RWPI relocation models we can't always have pointers
to global data or functions in constant data, so don't try to convert switches
into lookup tables if any value in the lookup table would require a relocation.
We can still safely emit lookup tables of other values, such as simple
constants.

Differential Revision: https://reviews.llvm.org/D24462

llvm-svn: 283530
2016-10-07 08:48:24 +00:00
Sjoerd Meijer 38c2cd0c14 This implements a more optimal algorithm for selecting a base constant in
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.

Differential Revision: http://reviews.llvm.org/D21183

llvm-svn: 275382
2016-07-14 07:44:20 +00:00
Diana Picus 92423ce194 [ARM] Do not test for CPUs, use SubtargetFeatures (Part 2). NFCI
This is a follow-up for r273544.

The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.

Since the ARM backend seems to have quite a lot of calls to these methods, I
intend to submit 5-6 subtarget features at a time, instead of one big lump.

Differential Revision: http://reviews.llvm.org/D21685

llvm-svn: 273853
2016-06-27 09:08:23 +00:00
Renato Golin 4b18a510a2 [ARM] AArch32 v8 NEON is still not IEEE-754 compliant
llvm-svn: 266603
2016-04-18 12:06:47 +00:00
Tim Northover 903f81ba18 ARM: don't try to hoist constant RHS out of a division.
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.

I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.

llvm-svn: 266464
2016-04-15 18:17:18 +00:00
Renato Golin 5cb666add7 [ARM] Adding IEEE-754 SIMD detection to loop vectorizer
Some SIMD implementations are not IEEE-754 compliant, for example ARM's NEON.

This patch teaches the loop vectorizer to only allow transformations of loops
that either contain no floating-point operations or have enough allowance
flags supporting lack of precision (ex. -ffast-math, Darwin).

For that, the target description now has a method which tells us if the
vectorizer is allowed to handle FP math without falling into unsafe
representations, plus a check on every FP instruction in the candidate loop
to check for the safety flags.

This commit makes LLVM behave like GCC with respect to ARM NEON support, but
it stops short of fixing the underlying problem: sub-normals. Neither GCC
nor LLVM have a flag for allowing sub-normal operations. Before this patch,
GCC only allows it using unsafe-math flags and LLVM allows it by default with
no way to turn it off (short of not using NEON at all).

As a first step, we push this change to make it safe and in sync with GCC.
The second step is to discuss a new sub-normal's flag on both communitues
and come up with a common solution. The third step is to improve the FastMath
flags in LLVM to encode sub-normals and use those flags to restrict NEON FP.

Fixes PR16275.

llvm-svn: 266363
2016-04-14 20:42:18 +00:00
Tim Northover 5c02f9ad28 ARM: override cost function to re-enable ConstantHoisting (& fix it).
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:

  + ConstantHoisting was modifying switch statements. This is simply invalid,
    the cases must remain integer constants no matter the notional cost.
  + ConstantHoisting was mangling alloca instructions in the entry block. These
    should be handled by FrameLowering, so constants actually have a cost of 0.
    Worse, the resulting bitcasts meant they became dynamic allocas.

rdar://25707382

llvm-svn: 266260
2016-04-13 23:08:27 +00:00
Eric Christopher a4e5d3cf8e constify the Function parameter to the TTI creation callback and
propagate to all callers/users/etc.

llvm-svn: 247864
2015-09-16 23:38:13 +00:00
Silviu Baranga e748c9ef55 [ARM] Turn on by default interleaved access vectorization
Summary:
This change turns on by default interleaved access vectorization on ARM,
as it has shown to be beneficial on ARM.

Reviewers: rengolin

Subscribers: aemerson, llvm-commits, rengolin

Differential Revision: http://reviews.llvm.org/D12146

llvm-svn: 246541
2015-09-01 11:19:15 +00:00
Chandler Carruth 93205eb966 [TTI] Make the cost APIs in TargetTransformInfo consistently use 'int'
rather than 'unsigned' for their costs.

For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).

All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.

This passes all tests, and is also UBSan clean.

No functional change intended.

Differential Revision: http://reviews.llvm.org/D11741

llvm-svn: 244080
2015-08-05 18:08:10 +00:00
Mehdi Amini 5010ebf181 Make TargetTransformInfo keeping a reference to the Module DataLayout
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.

Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11021

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
2015-07-09 02:08:42 +00:00
Hao Liu 2cd34bb585 [ARM] Lower interleaved memory accesses to vldN/vstN intrinsics.
This patch also adds a function to calculate the cost of interleaved memory accesses.

E.g. Lower an interleaved load:
        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>
        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>
     into:
        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1

E.g. Lower an interleaved store:
        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
     into:
        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)

Differential Revision: http://reviews.llvm.org/D10533

llvm-svn: 240755
2015-06-26 02:45:36 +00:00
Wei Mi 062c74484d [X86] Disable loop unrolling in loop vectorization pass when VF is 1.
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.

Differential Revision: http://reviews.llvm.org/D9515

llvm-svn: 236613
2015-05-06 17:12:25 +00:00
Cameron Esfahani 17177d1e84 Value soft float calls as more expensive in the inliner.
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation.  By default, it's not an expensive operation.  This keeps the default behavior the same as before.  The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.

Reviewers: chandlerc, echristo

Reviewed By: echristo

Subscribers: t.p.northover, aemerson, llvm-commits

Differential Revision: http://reviews.llvm.org/D6936

llvm-svn: 228263
2015-02-05 02:09:33 +00:00
Chandler Carruth c956ab6603 [multiversion] Switch the TTI queries from TargetMachine to Subtarget
now that we have a correct and cached subtarget specific to the
function.

Also, finish providing a cached per-function subtarget in the core
LLVMTargetMachine -- that layer hadn't switched over yet.

The only use of the TargetMachine was to re-lookup a subtarget for
a particular function to work around the fact that TTI was immutable.
Now that it is per-function and we haved a cached subtarget, use it.

This still leaves a few interfaces with real warts on them where we were
passing Function objects through the TTI interface. I'll remove these
and clean their usage up in subsequent commits now that this isn't
necessary.

llvm-svn: 227738
2015-02-01 14:22:17 +00:00
Chandler Carruth c340ca839c [multiversion] Remove the cached TargetMachine pointer from the
intermediate TTI implementation template and instead query up to the
derived class for both the TargetMachine and the TargetLowering.

Most of the derived types had a TLI cached already and there is no need
to store a less precisely typed target machine pointer.

This will in turn make it much cleaner to look up the TLI via
a per-function subtarget instead of the generic subtarget, and it will
pave the way toward pulling the subtarget used for unroll preferences
into the same form once we are *always* using the function to look up
the correct subtarget.

llvm-svn: 227737
2015-02-01 14:01:15 +00:00
Chandler Carruth 8b04c0d26a [multiversion] Switch all of the targets over to use the
TargetIRAnalysis access path directly rather than implementing getTTI.

This even removes getTTI from the interface. It's more efficient for
each target to just register a precise callback that creates their
specific TTI.

As part of this, all of the targets which are building their subtargets
individually per-function now build their TTI instance with the function
and thus look up the correct subtarget and cache it. NVPTX, R600, and
XCore currently don't leverage this functionality, but its trivial for
them to add it now.

llvm-svn: 227735
2015-02-01 13:20:00 +00:00
Chandler Carruth ee642690ea [multiversion] Remove a false freedom to leave the TargetMachine pointer
null.

For some reason some of the original TTI code supported a null target
machine. This seems to have been legacy, and I made matters worse when
refactoring this code by spreading that pattern further through the
various targets.

The TargetMachine can't actually be null, and it doesn't make sense to
support that use case. I've now consistently removed it and removed all
of the code trying to cope with that situation. This is probably good,
as several targets *didn't* cope with it being null despite the null
default argument in their constructors. =]

llvm-svn: 227734
2015-02-01 12:38:24 +00:00
Chandler Carruth 93dcdc47db [PM] Switch the TargetMachine interface from accepting a pass manager
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.

This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.

I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.

With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.

llvm-svn: 227685
2015-01-31 11:17:59 +00:00