The analyzer incorrectly treats captures as references if either the original
captured variable is a reference or the variable is captured by reference.
This causes the analyzer to crash when capturing a reference type by copy
(PR24914). Fix this by refering solely to the capture field to determine when a
DeclRefExpr for a lambda capture should be treated as a reference type.
https://llvm.org/bugs/show_bug.cgi?id=24914
rdar://problem/23524412
llvm-svn: 253157
Clang tries to figure out if a call to abs is suspicious by looking
through implicit casts to look at the underlying, implicitly converted
type.
Interestingly, C has implicit conversions from pointer-ish types like
function to less exciting types like int. This trips up our 'abs'
checker because it doesn't know which variant of 'abs' is appropriate.
Instead, diagnose 'abs' called on function types upfront. This sort of
thing is highly suspicious and is likely indicative of a missing
pointer dereference/function call/array index operation.
This fixes PR25532.
llvm-svn: 253156
Summary:
There are currently two blocks with the METADATA_BLOCK id at module
scope. The first has the module-level metadata values (consisting of
some combination of METADATA_* record codes except for METADATA_KIND).
The second consists only of METADATA_KIND records. The latter is used
only in the METADATA_ATTACHMENT block within function blocks (for
metadata attached to instructions).
For ThinLTO we want to delay the parsing of module level metadata
until all functions have been imported from that module (there is some
bookkeeping used to suture it up when we read it during a post-pass).
However, we do need the METADATA_KIND records when parsing the function
body during importing, since those kinds are used as described above.
To simplify identification and parsing of just the block containing
the metadata kinds, use a different block id (METADATA_KIND_BLOCK_ID).
Support older bitcode without the new block id as well.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14654
llvm-svn: 253154
Summary: This diff approaches building the project natively on NetBSD with the autoconf/gmake framework.
Patch by Kamil Rytarowski. Thanks!
Reviewers: emaste, clayborg
Subscribers: tberghammer, joerg, brucem, lldb-commits
Differential Revision: http://reviews.llvm.org/D14531
llvm-svn: 253153
Summary:
This approach is tunable with custom paths for curses library.
It also detects whether there are requirements met.
I make use of it on NetBSD.
Patch by Kamil Rytarowski. Thanks!
Reviewers: clayborg
Subscribers: brucem, joerg, lldb-commits
Differential Revision: http://reviews.llvm.org/D14529
llvm-svn: 253151
PT_GNU_STACK is a entry in the elf file format which contains the access rights (read, write, execute) of the stack,
it is always generated now. By default stack is not executable in this implementation.
-z execstack can be used to make executable.
Differential revision: http://reviews.llvm.org/D14571
llvm-svn: 253145
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
Summary:
Currently we always recompute LCSSA for outer loops after unrolling an
inner loop. That leads to compile time problem when we have big loop
nests, and we can solve it by avoiding unnecessary work. For instance,
if w eonly do partial unrolling, we don't break LCSSA, so we don't need
to rebuild it. Also, if all exits from the inner loop are inside the
enclosing loop, then complete unrolling won't break LCSSA either.
I replaced unconditional LCSSA recomputation with conditional recomputation +
unconditional assert and added several tests, which were failing when I
experimented with it.
Soon I plan to follow up with a similar patch for recalculation of dominators
tree.
Reviewers: hfinkel, dexonsmith, bogner, joker.eph, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14526
llvm-svn: 253126
This is a first pass at a cleanup of that code, modernizing the "type X clear" commands, and providing the basic infrastructure I plan to use all over
More cleanup will come over the next few days
llvm-svn: 253125
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
r233345 started being stricter about typedef names for linkage purposes
in non-visible modules, but broke languages without the ODR.
rdar://23527954
llvm-svn: 253123
attribute.
Even if the target supports shrink-wrapping, the prologue and epilogue
must not move because a crash can happen anywhere and sanitizers need
to be able to unwind from the PC of the crash.
llvm-svn: 253116
Several of these tests (the two deleted, and the one removal edit) were
relying on the optimizer to collapse things to test some frontend
feature. The tests were really old and features seemed amply covered by
other parts of the test suite, so I just removed them.
If anyone thinks they're valuable enough to keep/fix, we can play around
with that, for sure.
(inspired by r252872)
llvm-svn: 253114
Summary:
VisitReturnStmt would create a new block with including Dtors, so the Dtors created
in VisitCompoundStmts would be in an unreachable block.
Example:
struct S {
~S();
};
void f()
{
S s;
return;
}
void g()
{
S s;
}
Before this patch, f has one additional unreachable block containing just the
destructor of S. With this patch, both f and g have the same blocks.
Reviewers: krememek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13973
llvm-svn: 253107