With initializer lists there is a really neat idiomatic way to write
this, 'ArrayRef.equals({1, 2, 3, 4, 5})'. Remove the equal method which
always had a hard limit on the number of arguments. I considered
rewriting it with variadic templates but that's not really a good fit
for a function with homogeneous arguments.
'ArrayRef == {1, 2, 3, 4, 5}' would've been even more awesome, but C++11
doesn't allow init lists with binary operators.
llvm-svn: 230907
All of the cases were just appending from random access iterators to a
vector. Using insert/append can grow the vector to the perfect size
directly and moves the growing out of the loop. No intended functionalty
change.
llvm-svn: 230845
Summary:
Until now, we did this (among other things) based on whether or not the
target was Windows. This is clearly wrong, not just for Win64 ABI functions
on non-Windows, but for System V ABI functions on Windows, too. In this
change, we make this decision based on the ABI the calling convention
specifies instead.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7953
llvm-svn: 230793
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
llvm-svn: 230753
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
llvm-svn: 230751
Summary:
This change causes us to actually save non-volatile registers in a Win64
ABI function that calls a System V ABI function, and vice-versa.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7919
llvm-svn: 230714
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
llvm-svn: 230710
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
llvm-svn: 230695
dynamic blends.
This makes it much more clear what is going on. The case we're handling
is that of dynamic conditions, and we're bailing when the nature of the
vector types and subtarget preclude lowering the dynamic condition
vselect as an actual blend.
No functionality changed here, but this will make a subsequent bug-fix
to this code much more clear.
llvm-svn: 230690
The latency for the WriteMULm class was set to 4, which is actually lower than the latency for WriteMULr (5).
A better estimate would be 4 added to WriteMULr, that is, 9.
llvm-svn: 230634
formulaic into the top v8i16 lowering routine.
This makes the generalized lowering a completely general and single path
lowering which will allow generalizing it in turn for multiple 128-bit
lanes.
llvm-svn: 230623
Explanation: This function is in TargetLowering because it uses
RegClassForVT which would need to be moved to TargetRegisterInfo
and would necessitate moving isTypeLegal over as well - a massive
change that would just require TargetLowering having a TargetRegisterInfo
class member that it would use.
llvm-svn: 230585
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
The Win64 epilogue structure is very restrictive, it permits a very
small number of opcodes and none of them are 'mov'.
This means that given:
mov %rbp, %rsp
pop %rbp
The mov isn't the epilogue, only the pop is. This is problematic unless
a frame pointer is present in which case we are free to do whatever we'd
like in the "body" of the function. If a frame pointer is present,
unwinding will undo the prologue operations in reverse order regardless
of the fact that we are at an instruction which is reseting the stack
pointer.
llvm-svn: 230543
Reapply r230248.
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230499
MMX_MOVD64rm zero-extends i32 load results into i64 registers.
The peephole optimizer will try to fold it in other MMX foldable
instructions, the wrong thing to do, since there's no MMX memory
instruction that loads from i32 and does implict zero extension.
Remove 'canFoldAsLoad' from MOVD64rm in order to prevent such folding.
The current MMX tests already test this, but since there are no MMX
instructions in the foldable tables yet, this did not trigger. This
commit prepares the addition of those instructions.
llvm-svn: 230498
Gather and scatter instructions additionally write to one of the source operands - mask register.
In this case Gather has 2 destination values - the loaded value and the mask.
Till now we did not support code gen pattern for gather - the instruction was generated from
intrinsic only and machine node was hardcoded.
When we introduce the masked_gather node, we need to select instruction automatically,
in the standard way.
I added a flag "hasTwoExplicitDefs" that allows to handle 2 destination operands.
(Some code in the X86InstrFragmentsSIMD.td is commented out, just to split one big
patch in many small patches)
llvm-svn: 230471
Prologue emission, in some cases, requires calls to a stack probe helper
function. The amount of stack to probe is passed as a register
argument in the Win64 ABI but the instruction sequence used is
pessimistic: it assumes that the number of bytes to probe is greater
than 4 GB.
Instead, select a more appropriate opcode depending on the number of
bytes we are going to probe.
llvm-svn: 230270
Front-ends could use global unnamed_addr to hold pointers to other
symbols, like @gotequivalent below:
@foo = global i32 42
@gotequivalent = private unnamed_addr constant i32* @foo
@delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64),
i64 ptrtoint (i32* @delta to i64))
to i32)
The global @delta holds a data "PC"-relative offset to @gotequivalent,
an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows:
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
Since unnamed_addr indicates that the address is not significant, only
the content, we can optimize the case above by replacing pc-relative
accesses to "GOT equivalent" globals, by a PC relative access to the GOT
entry of the final symbol instead. Therefore, "delta" can contain a pc
relative relocation to foo's GOT entry and we avoid the emission of
"gotequivalent", yielding the assembly code below:
.globl _foo
_foo:
.long 42
.globl _delta
_delta:
.long _foo@GOTPCREL+4
There are a couple of advantages of doing this: (1) Front-ends that need
to emit a great deal of data to store pointers to external symbols could
save space by not emitting such "got equivalent" globals and (2) IR
constructs combined with this opt opens a way to represent GOT pcrel
relocations by using the LLVM IR, which is something we previously had
no way to express.
Differential Revision: http://reviews.llvm.org/D6922
rdar://problem/18534217
llvm-svn: 230264
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230226
I made the templates general, no need to define pattern separately for each instruction/intrinsic.
Now only need to add r_Int pattern for AVX.
llvm-svn: 230221