The `LLVMTargetMachineEmitToFile` takes a `char* Filename` right now, but it doesn't modify it.
This is annoying to use in the case where you want to pass a const string, because you either have to remove the const, or copy it somewhere else and pass that. Either way, it's not very nice.
I added a const and clang formatted it. This shouldn't break any ABI in my opinion.
I'm sorry but I didn't know whom to put as reviewer for this, so I chose someone with a lot of commits from the .cpp file.
Reviewed By: deadalnix
Differential Revision: https://reviews.llvm.org/D124453
Most notably, Pass.h is no longer included by TargetMachine.h
before: 1063570306
after: 1063332844
Differential Revision: https://reviews.llvm.org/D121168
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Avoids the need to include TargetMachine.h from various places just for
an enum. Various other enums live here, such as the optimization level,
TLS model, etc. Data suggests that this change probably doesn't matter,
but it seems nice to have anyway.
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary: Add read[only|write] PIC relocation models to the C API and teach the TargetMachine API about it.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56187
llvm-svn: 350279
rL333307 was introduced to remove automatic target triple
normalization when calling sys::getDefaultTargetTriple(), arguing
that users of the latter already called Triple::normalize()
if necessary. However, users of the C API currently have no way of
doing target triple normalization.
This patch introduces an LLVMNormalizeTargetTriple function to
the C API which wraps Triple::normalize() and can be used on
the result of LLVMGetDefaultTargetTriple to achieve the same effect.
Differential Revision: https://reviews.llvm.org/D49414
Reviewed By: whitequark
llvm-svn: 337263
Without these functions it's hard to create a TargetMachine for
Orc JIT that creates efficient native code.
It's not sufficient to just expose LLVMGetHostCPUName(), because
for some CPUs there's fewer features actually available than
the CPU name indicates (e.g. AVX might be missing on some CPUs
identified as Skylake).
Differential Revision: https://reviews.llvm.org/D44861
llvm-svn: 329856
This includes llvm-c/TargetMachine.h which is logically part of
libTarget (since libTarget implements llvm-c/TargetMachine.h's
functions).
llvm-svn: 328394
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
r180893 added an indirect include of llvm/Config/Targets.def to
llvm/Support/CodeGen.h, which in turn is included by things like
llvm/IR/Module.h. After a full build of LLVM and Clang, ninja had to
rebuild 1274 files after reconfiguring.
This commit strips CodeGen.h back down to just a pile of enums and moves
the expensive includes over to CodeGenCWrappers.h (which is only
included in two places). This gets ninja down to 88 files if you
reconfigure with, e.g., -DLLVM_TARGETS_TO_BUILD=X86.
llvm-svn: 260835
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246082
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246052
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246044
This reverts commit 433bfd94e4b7e3cc3f8b08f8513ce47817941b0c.
Broke some bot, have to see why it passed locally.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 245917
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 245916
After r244870 flush() will only compare two null pointers and return,
doing nothing but wasting run time. The call is not required any more
as the stream and its SmallString are always in sync.
Thanks to David Blaikie for reviewing.
llvm-svn: 244928
There is an ODR conflict between lib/ExecutionEngine/ExecutionEngineBindings.cpp
and lib/Target/TargetMachineC.cpp. The inline definitions should simply
be marked static (thanks dblaikie for the hint).
llvm-svn: 243298
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.
It breaks clang too badly, I need to prepare a proper patch for clang
first.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10381
llvm-svn: 239815
The TargetRegistry is just a namespace-like class, instantiated in one
place to use a range-based for loop. Instead, expose access to the
registry via a range-based 'targets()' function instead. This makes most
uses a bit awkward/more verbose - but eventually we should just add a
range-based find_if function which will streamline these functions. I'm
happy to mkae them a bit awkward in the interim as encouragement to
improve the algorithms in time.
llvm-svn: 237059
formatted_raw_ostream is a wrapper over another stream to add column and line
number tracking.
It is used only for asm printing.
This patch moves the its creation down to where we know we are printing
assembly. This has the following advantages:
* Simpler lifetime management: std::unique_ptr
* We don't compute column and line number of object files :-)
llvm-svn: 234535
Revert "Add classof implementations to the raw_ostream classes."
Revert "Use the cast machinery to remove dummy uses of formatted_raw_ostream."
The underlying issue can be fixed without classof.
llvm-svn: 234495
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
terms of the new pass manager's TargetIRAnalysis.
Yep, this is one of the nicer bits of the new pass manager's design.
Passes can in many cases operate in a vacuum and so we can just nest
things when convenient. This is particularly convenient here as I can
now consolidate all of the TargetMachine logic on this analysis.
The most important change here is that this pushes the function we need
TTI for all the way into the TargetMachine, and re-creates the TTI
object for each function rather than re-using it for each function.
We're now prepared to teach the targets to produce function-specific TTI
objects with specific subtargets cached, etc.
One piece of feedback I'd love here is whether its worth renaming any of
this stuff. None of the names really seem that awesome to me at this
point, but TargetTransformInfoWrapperPass is particularly ... odd.
TargetIRAnalysisWrapper might make more sense. I would want to do that
rename separately anyways, but let me know what you think.
llvm-svn: 227731
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
llvm-svn: 227685