opening single quote with no closing single quote, and with {} quotes
"inside" of it. This broke some of our tools that scrape test cases.
Also, while here, make the test actually assert what the comment says it
asserts. This was essentially authored by Nick Lewycky, and merely typed
in by myself. Let me know if this is still missing the mark, but the
previous test only succeeded due to the improper quoting preventing
*anything* from matching the grep -- it had a '4(%...)' sequence in the
output!
llvm-svn: 133980
When the destination operand is the same as the first source register
operand for arithmetic instructions, the destination operand may be omitted.
For example, the following two instructions are equivalent:
and r1, #ff
and r1, r1, #ff
rdar://9672867
llvm-svn: 133973
Correctly parse the forms of the Thumb mov-immediate instruction:
1. 8-bit immediate 0-255.
2. 12-bit shifted-immediate.
The 16-bit immediate "movw" form is also legal with just a "mov" mnemonic,
but is not yet supported. More parser logic necessary there due to fixups.
llvm-svn: 133966
This was causing compile-time failures for some of the Objc and Obj-C++
benchmarks. The specific errors were of the form: "ld: duplicate symbol …"
rdar://9660124
llvm-svn: 133955
Thumb2 MOV mnemonic can accept both cc_out and predication. We don't (yet)
encode the instruction properly, but this gets the parsing part.
llvm-svn: 133945
Add aliases for the vpush/vpop mnemonics to the VFP load/store multiple
writeback instructions w/ SP as the base pointer.
rdar://9683231
llvm-svn: 133932
When the destination operand is the same as the first source register
operand for arithmetic instructions, the destination operand may be omitted.
For example, the following two instructions are equivalent:
sub r2, r2, #6
sub r2, #6
rdar://9682597
llvm-svn: 133925
Removed the check that peeks past EXTRA_SUBREG, which I don't think
makes sense any more. Intead treat it as a normal register def. No
significant affect on x86 or ARM benchmarks.
llvm-svn: 133917
Also fix some of the tests that were actually testing wrong behavior -
An input operand in {st} is only popped by the inline asm when {st} is
also in the clobber list.
The original bug reports all had ~{st} clobbers as they should.
llvm-svn: 133916
alloca that only holds a copy of a global and we're going to replace the users
of the alloca with that global, just nuke the lifetime intrinsics. Part of
PR10121.
llvm-svn: 133905
Both become <earlyclobber> defs on the INLINEASM MachineInstr, but we
now use two different asm operand kinds.
The new Kind_Clobber is treated identically to the old
Kind_RegDefEarlyClobber for now, but x87 floating point stack inline
assembly does care about the difference.
This will pop a register off the stack:
asm("fstp %st" : : "t"(x) : "st");
While this will pop the input and push an output:
asm("fst %st" : "=&t"(r) : "t"(x));
We need to know if ST0 was a clobber or an output operand, and we can't
depend on <dead> flags for that.
llvm-svn: 133902
The INLINEASM MachineInstrs have an immediate operand describing each
original inline asm operand. Decode the bits in MachineInstr::print() so
it is easier to read:
INLINEASM <es:rorq $1,$0>, $0:[regdef], %vreg0<def>, %vreg1<def>, $1:[imm], 1, $2:[reguse] [tiedto:$0], %vreg2, %vreg3, $3:[regdef-ec], %EFLAGS<earlyclobber,imp-def>
llvm-svn: 133901
The .b8 operations in PTX are far more limiting than I first thought. The mov operation isn't even supported, so there's no way of converting a .pred value into a .b8 without going via .b16, which is
not sensible. An improved implementation needs to use the fact that loads and stores automatically extend and truncate to implement support for EXTLOAD and TRUNCSTORE in order to correctly support
boolean values.
llvm-svn: 133873
Move the target-specific RecordRelocation logic out of the generic MC
MachObjectWriter and into the target-specific object writers. This allows
nuking quite a bit of target knowledge from the supposedly target-independent
bits in lib/MC.
llvm-svn: 133844
Sorry, this was a bad idea. Within clang these builtins are in a separate
"ARM" namespace, but the actual builtin names should clearly distinguish that
they are target specific.
llvm-svn: 133832
The fixup value comes in as the whole 32-bit value, so for the lo16 fixup,
the upper bits need to be masked off. Previously we assumed the masking had
already been done and asserted.
rdar://9635991
llvm-svn: 133818
The i8 type is required for boolean values, but can only use ld, st and mov instructions. The i1 type continues to be used for predicates.
llvm-svn: 133814
instructions can be used to match combinations of multiply/divide and VCVT
(between floating-point and integer, Advanced SIMD). Basically the VCVT
immediate operand that specifies the number of fraction bits corresponds to a
floating-point multiply or divide by the corresponding power of 2.
For example, VCVT (floating-point to fixed-point, Advanced SIMD) can replace a
combination of VMUL and VCVT (floating-point to integer) as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vmul.f32 d16, d17, d16
vcvt.s32.f32 d16, d16
becomes:
vcvt.s32.f32 d16, d16, #3
Similarly, VCVT (fixed-point to floating-point, Advanced SIMD) can replace a
combinations of VCVT (integer to floating-point) and VDIV as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vcvt.f32.s32 d16, d16
vdiv.f32 d16, d17, d16
becomes:
vcvt.f32.s32 d16, d16, #3
llvm-svn: 133813
.file and .loc directives.
Ideally, we would utilize the existing support in AsmPrinter for this, but
I cannot find a way to get .file and .loc directives to print without the
rest of the associated DWARF sections, which ptxas cannot handle.
llvm-svn: 133812
enables SelectionDAG::getLoad at MipsISelLowering.cpp:1914 to return a
pre-existing node instead of redundantly create a new node every time it is
called.
llvm-svn: 133811
This caused linker errors when linking both libLLVMX86Desc and libLLVMX86CodeGen
into a single binary (for example when building a monolithic libLLVM shared library).
llvm-svn: 133791
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
llvm-svn: 133782
parameters if SM >= 2.0
- Update test cases to be more robust against register allocation changes
- Bump up the number of registers to 128 per type
- Include Python script to re-generate register file with any number of
registers
llvm-svn: 133736
It has only one user. This eliminates the last include of
config.h from the public headers -- ideally, config.h
shouldn't even be installed by `make install` anymore.
llvm-svn: 133713
Replace it with llvm-config.h, which defines a subset of
config.h's macros "so that they can be in exported headers
and won't override package specific directives", e.g.,
PACKAGE_NAME.
Endian.h wasn't using any macros at all though, so just delete
the include there instead.
llvm-svn: 133712
"Reinstate r133435 and r133449 (reverted in r133499) now that the clang
self-hosted build failure has been fixed (r133512)."
Due to some additional warnings.
llvm-svn: 133700
register allocation if it has a indirectbr or if we can duplicate it to
every predecessor.
This fixes the SingleSource/Benchmarks/Shootout-C++/matrix.cpp regression but
keeps the previous improvements to sunspider.
llvm-svn: 133682
Take #2. Don't piggyback on the existing config.build_mode. Instead,
define a new lit feature for each build feature we need (currently
just "asserts"). Teach both autoconf'd and cmake'd Makefiles to define
this feature within test/lit.site.cfg. This doesn't require any lit
harness changes and should be more robust across build systems.
llvm-svn: 133664
If the linker supports it, this will hold the CIE and FDE information in a
compact format. The implementation of the compact unwinding emission is coming
soon.
llvm-svn: 133658
representing a constant reference to ValType. Normally this is just
"const ValType &", but when ValType is a std::vector we want to use
ArrayRef as the reference type.
llvm-svn: 133611
be one with only one unconditional branch and no phis. Duplicating the phis in this case
is possible, but requeres liveness analysis or breaking edges.
llvm-svn: 133607
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
llvm-svn: 133503
ops.
This is a rewrite of the IV simplification algorithm used by
-disable-iv-rewrite. To avoid perturbing the default mode, I
temporarily split the driver and created SimplifyIVUsersNoRewrite. The
idea is to avoid doing opcode/pattern matching inside
IndVarSimplify. SCEV already does it. We want to optimize with the
full generality of SCEV, but optimize def-use chains top down on-demand rather
than rewriting the entire expression bottom-up. This was easy to do
for operations that SCEV can prove are identity function. So we're now
eliminating bitmasks and zero extends this way.
A result of this rewrite is that indvars -disable-iv-rewrite no longer
requires IVUsers.
llvm-svn: 133502
The current implementation generates stack loads/stores, which are
really just mov instructions from/to "special" registers. This may
not be the most efficient implementation, compared to an approach where
the stack registers are directly folded into instructions, but this is
easier to implement and I have yet to see a case where ptxas is unable
to see through this kind of register usage and know what is really
going on.
llvm-svn: 133443
Change PHINodes to store simple pointers to their incoming basic blocks,
instead of full-blown Uses.
Note that this loses an optimization in SplitCriticalEdge(), because we
can no longer walk the use list of a BasicBlock to find phi nodes. See
the comment I removed starting "However, the foreach loop is slow for
blocks with lots of predecessors".
Extend replaceAllUsesWith() on a BasicBlock to also update any phi
nodes in the block's successors. This mimics what would have happened
when PHINodes were proper Users of their incoming blocks. (Note that
this only works if OldBB->replaceAllUsesWith(NewBB) is called when
OldBB still has a terminator instruction, so it still has some
successors.)
llvm-svn: 133435
Change various bits of code to make better use of the existing PHINode
API, to insulate them from forthcoming changes in how PHINodes store
their operands.
llvm-svn: 133434
I don't think the AugmentedUse struct buys us much, either in
correctness or in ease of use. Ditch it, and simplify Use::getUser() and
User::allocHungoffUses().
llvm-svn: 133433
* Don't introduce a duplicated bb in the CFG
* When making a branch unconditional, clear the PredCond array so that it
is really unconditional.
llvm-svn: 133432
dragonegg buildbots back to life. Original commit message:
Teach early dup how to duplicate basic blocks with one successor and only phi instructions
into more complex blocks.
llvm-svn: 133430
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
A RegisterTuples instance is used to synthesize super-registers by
zipping together lists of sub-registers. This is useful for generating
pseudo-registers representing register sequence constraints like 'two
consecutive GPRs', or 'an even-odd pair of floating point registers'.
The RegisterTuples def can be used in register set operations when
building register classes. That is the only way of accessing the
synthesized super-registers.
For example, the ARM QQ register class of pseudo-registers could have
been formed like this:
// Form pairs Q0_Q1, Q2_Q3, ...
def QQPairs : RegisterTuples<[qsub_0, qsub_1],
[(decimate QPR, 2),
(decimate (shl QPR, 1), 2)]>;
def QQ : RegisterClass<..., (add QQPairs)>;
Similarly, pseudo-registers representing '3 consecutive D-regs with
wraparound' look like:
// Form D0_D1_D2, D1_D2_D3, ..., D30_D31_D0, D31_D0_D1.
def DSeqTriples : RegisterTuples<[dsub_0, dsub_1, dsub_2],
[(rotl DPR, 0),
(rotl DPR, 1),
(rotl DPR, 2)]>;
TableGen automatically computes aliasing information for the synthesized
registers.
Register tuples are still somewhat experimental. We still need to see
how they interact with MC.
llvm-svn: 133407
top level type without a specified number. This asmprinter has never
generated this, as you can tell by no tests being updated. It also isn't
documented.
llvm-svn: 133368
In cases such as the attached test, where the case value for a switch
destination is used in a phi node that follows the destination, it
might be better to replace that value with the condition value of the
switch, so that more blocks can be folded away with
TryToSimplifyUncondBranchFromEmptyBlock because there are less
conflicts in the phi node.
llvm-svn: 133344
type's bitwidth matches the (allocated) size of the alloca. This severely
pessimizes vector scalar replacement when the only vector type being used is
something like <3 x float> on x86 or ARM whose allocated size matches a
<4 x float>.
I hope to fix some of the flawed assumptions about allocated size throughout
scalar replacement and reenable this in most cases.
llvm-svn: 133338
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
Targets that need to change the default allocation order should use the
AltOrders mechanism instead. See the X86 and ARM targets for examples.
The allocation_order_begin() and allocation_order_end() methods have been
replaced with getRawAllocationOrder(), and there is further support
functions in RegisterClassInfo.
It is no longer possible to insert arbitrary code into generated
register classes. This is a feature.
llvm-svn: 133332
A register class can define AltOrders and AltOrderSelect instead of
defining method protos and bodies. The AltOrders lists can be defined
with set operations, and TableGen can verify that the alternative
allocation orders only contain valid registers.
This is currently an opt-in feature, and it is still possible to
override allocation_order_begin/end. That will not be true for long.
llvm-svn: 133320