Identical COMDAT Folding is a feature to merge COMDAT sections
by contents. Two sections are considered the same if their contents,
relocations, attributes, etc, are all the same.
An interesting fact is that MSVC linker takes "iterations" parameter
for ICF because the algorithm they are using is iterative. Merging
two sections could make more sections to be mergeable because
different relocations could now point to the same section. ICF is
repeated until we get a convergence (until no section can be merged).
This algorithm is not fast. Usually it needs three iterations until a
convergence is obtained.
In the new algorithm implemented in this patch, we consider sections
and relocations as a directed acyclic graph, and we try to merge
sections whose outdegree is zero. Sections with outdegree zero are then
removed from the graph, which makes other sections to have outdegree
zero. We repeat that until all sections are processed. In this
algorithm, we don't iterate over the same sections many times.
There's an apparent issue in the algorithm -- the section graph is
not guaranteed to be acyclic. It's actually pretty often cyclic.
So this algorithm cannot eliminate all possible duplicates.
That's OK for now because the previous algorithm was not able to
eliminate cycles too. I'll address the issue in a follow-up patch.
llvm-svn: 246878
Previously, we calculated our own hash values for section contents.
Of coruse that's slow because we had to access all bytes in sections.
Fortunately, COFF objects usually contain hash values for COMDAT
sections. We can use that to speed up Identical COMDAT Folding.
llvm-svn: 246869
The option is added in MSVC 2015, and there's no documentation about
what the option is. This patch is to ignore the option for now, so that
at least LLD is usable with MSVC 2015.
llvm-svn: 246780
This patch fixes a subtle incompatibility with MSVC linker.
MSVC linker preserves the original spelling of a DLL in the
import descriptor table. LLD previously converted all
characters to lowercase. Usually this difference is benign,
but if a program explicitly checks for DLL file names, the
program could fail.
llvm-svn: 246620
In r246424, I made a change that disables non-DLL to export
symbols. It turned out that the change was not correct. Both
DLLs and executables are able to export symbols (although the
latter is relatively rare). This change restores the feature.
llvm-svn: 246537
I have totally no idea why, but MSVC linker is sensitive about
file names of archive members. If we do not make import library
file names to the same as the DLL name, MSVC link *crashes*
when it is processing the library file. This patch is to set
the same name.
llvm-svn: 246535
The rules for dllexported symbols are overly complicated due to
x86 name decoration, fuzzy symbol resolution, and the fact that
one symbol can be resolved by so many different names. The rules
are probably intended to be "intuitive", so that users don't have
to understand the name mangling schemes, but it seems that it can
lead to unintended symbol exports.
To make it clear what I'm trying to do with this patch, let me
write how the export rules are subtle and complicated.
- x86 name decoration: If machine type is i386 and export name
is given by a command line option, like /export:foo, the
real symbol name the linker has to search for is _foo because
all symbols are decorated with "_" prefixes. This doesn't happen
on non-x86 machines. This automatic name decoration happens only
when the name is not C++ mangled.
However, the symbol name exported from DLLs are ones without "_"
on all platforms.
Moreover, if the option is given via .drectve section, no
symbol decoration is done (the reason being that the .drectve
section is created by a compiler and the compiler should always
know the exact name of the symbol, I guess).
- Fuzzy symbol resolution: In addition to x86 name decoration,
the linker has to look for cdecl or C++ mangled symbols
for a given /export. For example, it searches for not only
_foo but also _foo@<number> or ??foo@... for /export:foo.
Previous implementation didn't get it right. I'm trying to make
it as compatible with MSVC linker as possible with this patch
however the rules are. The new code looks a bit messy to me, but
I don't think it can be simpler due to the ad-hoc-ness of the rules.
llvm-svn: 246424
This is exposed via a new flag /opt:lldltojobs=N, where N is the number of
code generation threads.
Differential Revision: http://reviews.llvm.org/D12309
llvm-svn: 246342
lib.exe has a feature to create import library files (which contain
short import files) from module-definition files. Previously, we were
using that feature, but it turned out that the feature is not complete
for us.
There seems no way to specify "Import Types" in module-definition file.
lib.exe always adds "_" to given symbols and specify IMPORT_NAME_UNDECORATE.
We need more fine-grainded control on that value.
This patch teaches LLD to create short import files itself.
We are still using lib.exe, but the use of the tool is limited to create
empty import library files. We then create short import files and add them
to the empty files as new members.
This patch does not intend to change the functionality. LLD produces
the same import libraries as before. I'll make another change to create
different import libraries in a follow-up patch.
llvm-svn: 246292
__NULL_IMPORT_DESCRIPTOR is a symbol used by MSVC liner to construct
the import descriptor table. We do not use the symbol. Previously,
we had code to skip that symbol. That code does not actually do
anything meaningful because no one is referencing the symbol, the
symbol would naturally be ignored. This patch stops recognizing
the symbol.
llvm-svn: 245280
Previously, weak external symbols could reference only symbols that
appeared before them. Although that covers almost all use cases
of weak externals, there are object files out there which contains
weak externals that have forward references.
This patch supports such weak externals.
llvm-svn: 245258
There are some DLLs whose initializers depends on other DLLs'
initializers. The initialization order matters for them.
MSVC linker uses the order of the libraries from the command line.
LLD used ASCII-betical order. So they were incompatible.
This patch makes LLD compatible with MSVC.
llvm-svn: 245201
This is more convenient than the offset from the start of the file as we
don't have to worry about it changing when we move the output section.
This is a port of r245008 from ELF.
llvm-svn: 245018
Sections must start at page boundaries in memory, but they
can be aligned to sector boundaries (512-bytes) on disk.
We aligned them to 4096-byte boundaries even on disk, so we
wasted disk space a bit.
llvm-svn: 244691
MSVC 2015's load configuration object (__load_config_used) contains
references to these symbols. I don't fully understand how it works,
but looks like these symbols are linker-defined ones. So I define them
here in the Driver. With this patch, LLD can self-host with MSVC 2015.
This patch is to link MSVC 2015-produced object files. It does not
implement Control Flow Protection. If I understand correctly, the
linker has to create a bitmap of function entry point addresses for
the CFG runtime. We don't do that yet. Produced executables will not
be protected by CFG.
llvm-svn: 244425
SymbolTable::find(mangle(X)) is equivalent to SymbolTable::findUnderscore(X)
except that the latter is slightly efficient as that doesn't allocate a new
string.
llvm-svn: 244377
This has a few advantages
* Less C++ code (about 300 lines less).
* Less machine code (about 14 KB of text on a linux x86_64 build).
* It is more debugger friendly. Just set a breakpoint on the exit function and
you get the complete lld stack trace of when the error was found.
* It is a more robust API. The errors are handled early and we don't get a
std::error_code hot potato being passed around.
* In most cases the error function in a better position to print diagnostics
(it has more context).
llvm-svn: 244215
Various parameters are passed implicitly using Config global variable
already. Output file path is no different from others, so there was no
special reason to handle that differnetly.
This patch changes the signature of writeResult(SymbolTable *, StringRef)
to writeResult(SymbolTable *).
llvm-svn: 244180
We were printing an error but exiting with 0.
Not sure how to test this. We could add a no-winlib feature,
but that is probably not worth it.
llvm-svn: 244109