Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill
behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 282600
Summary:
N32 and N64 follow the standard ELF conventions (.L) whereas O32 uses its own
($).
This fixes the majority of object differences between -fintegrated-as and
-fno-integrated-as.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: https://reviews.llvm.org/D22412
llvm-svn: 275967
Summary:
The machine verifier reports 'Explicit operand marked as def' when it is
manually specified even though it agrees with the operand info.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21065
llvm-svn: 272646
This change follows up defaults for GCC and Clang, so LLVM does not differ
from them. While number of the test files are touched with this change, they
all keep the old (expected) behaviour with the explicit option:
"-relocation-model=pic"
The tests that have not been touched are insensitive to relocation model.
Differential Revision: http://reviews.llvm.org/D17995
llvm-svn: 265949
Summary:
The forwards compatibility strategy employed by MIPS is to consider registers
to be infinitely sign-extended. Then on ISA's with a wider register, the result
of existing instructions are sign-extended to register width and zero-extended
counterparts are added. copy_u.w on MSA32 and copy_u.w on MSA64 violate this
strategy and we have therefore corrected the MSA specs to fix this.
We still keep track of sign/zero-extension during legalization but we now
match copy_s.[wd] where required.
No change required to clang since __builtin_msa_copy_u_[wd] will map to
copy_s.[wd] where appropriate for the target.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13472
llvm-svn: 250887
Summary:
The documentation writes vectors highest-index first whereas LLVM-IR writes
them lowest-index first. As a result, instructions defined in terms of
left_half() and right_half() had the halves reversed.
In addition to correcting them, they have been improved to allow shuffles
that use the same operand twice or in reverse order. For example, ilvev
used to accept masks of the form:
<0, n, 2, n+2, 4, n+4, ...>
but now accepts:
<0, 0, 2, 2, 4, 4, ...>
<n, n, n+2, n+2, n+4, n+4, ...>
<0, n, 2, n+2, 4, n+4, ...>
<n, 0, n+2, 2, n+4, 4, ...>
One further improvement is that splati.[bhwd] is now the preferred instruction
for splat-like operations. The other special shuffles are no longer used
for splats. This lead to the discovery that <0, 0, ...> would not cause
splati.[hwd] to be selected and this has also been fixed.
This fixes the enc-3des test from the test-suite on Mips64r6 with MSA.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9660
llvm-svn: 237689
Summary:
When using the N64 ABI, element-indices use the i64 type instead of i32.
In many cases, we can use iPTR to account for this but additional patterns
and pseudo's are also required.
This fixes most (but not quite all) failures in the test-suite when using
N64 and MSA together.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9342
llvm-svn: 236494
Summary:
The majority of the checks are subtarget independent. The few that aren't
will be corrected shortly.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9340
llvm-svn: 236220
Summary:
This doesn't make much difference to MIPS32, but it will simplify a
MIPS64r6 bugfix which will follow shortly by removing unnecessary
sign-extension of parameters.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9338
llvm-svn: 236216
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Summary:
This is done by removing some hardcoded registers like $at or expecting a single digit register to be selected.
Contains work done by Matheus Almeida.
Reviewers: matheusalmeida, dsanders
Reviewed By: dsanders
Subscribers: tomatabacu
Differential Revision: http://reviews.llvm.org/D4227
llvm-svn: 215640
Summary:
This isn't supported directly so we rotate the vector by the desired number of
elements, insert to element zero, then rotate back.
The i64 case generates rather poor code on MIPS32. There is an obvious
optimisation to be made in future (do both insert.w's inside a shared
rotate/unrotate sequence) but for now it's sufficient to select valid code
instead of aborting.
Depends on D3536
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3537
llvm-svn: 207640
Summary:
This isn't supported directly so we splat the vector element and extract
the most convenient copy.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3530
llvm-svn: 207524
Summary:
VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
<0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
VSHF concatenates the vectors in a bitwise fashion:
<0b00, 0b01> + <0b10, 0b11> ->
0b0100 + 0b1110 -> 0b01001110
<0b10, 0b11, 0b00, 0b01>
We must therefore swap the operands to get the correct result.
The test case that discovered the issue was MultiSource/Benchmarks/nbench.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3142
llvm-svn: 204480
Summary:
Correct the match patterns and the lowerings that made the CodeGen tests pass despite the mistakes.
The original testcase that discovered the problem was SingleSource/UnitTests/SignlessType/factor.c in test-suite.
During review, we also found that some of the existing CodeGen tests were incorrect and fixed them:
* bitwise.ll: In bsel_v16i8 the IfSet/IfClear were reversed because bsel and bmnz have different operand orders and the test didn't correctly account for this. bmnz goes 'IfClear, IfSet, CondMask', while bsel goes 'CondMask, IfClear, IfSet'.
* vec.ll: In the cases where a bsel is emitted as a bmnz (they are the same operation with a different input tied to the result) the operands were in the wrong order.
* compare.ll and compare_float.ll: The bsel operand order was correct for a greater-than comparison, but a greater-than comparison instruction doesn't exist. Lowering this operation inverts the condition so the IfSet/IfClear need to be swapped to match.
The differences between BSEL, BMNZ, and BMZ and how they map to/from vselect are rather confusing. I've therefore added a note to MSA.txt to explain this in a single place in addition to the comments that explain each case.
Reviewers: matheusalmeida, jacksprat
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3028
llvm-svn: 203657
Summary:
Previously, attempting to extract lanes 2 and 3 would actually extract lane 1.
The MSA CodeGen tests only covered lanes 0 and 1.
Differential Revision: http://llvm-reviews.chandlerc.com/D2935
llvm-svn: 202848
Summary:
Parts of the compiler still believed MSA load/stores have a 16-bit offset when
it is actually 10-bit. Corrected this, and fixed a closely related issue this
uncovered where load/stores with 10-bit and 12-bit offsets (MSA and microMIPS
respectively) could not load/store using offsets from the stack/frame pointer.
They accepted frameindex+offset, but not frameindex by itself.
Reviewers: jacksprat, matheusalmeida
Reviewed By: jacksprat
Differential Revision: http://llvm-reviews.chandlerc.com/D2888
llvm-svn: 202717
This patch teaches the DAGCombiner how to fold a sext/aext/zext dag node when
the operand in input is a build vector of constants (or UNDEFs).
The inability to fold a sext/zext of a constant build_vector was the root
cause of some pcg bugs affecting vselect expansion on x86-64 with AVX support.
Before this change, the DAGCombiner only knew how to fold a sext/zext/aext of a
ConstantSDNode.
llvm-svn: 200234
Summary:
$rs and $rt were the wrong way round in the .td and the testcase wasn't
strict enough to detect the mistake.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2554
llvm-svn: 199498
Summary:
The MSA ld.[bhwd] and st.[bhwd] instructions scale the immediate by the
element size before use as an offset. The offset must therefore be a
multiple of the element size to be valid in these instructions. However,
an unaligned base address is valid in MSA.
This commit causes the compiler to emit valid code when the calculated
offset is not a multiple of the element size by accounting for the offset
using addiu and using a zero offset in the load/store.
Depends on D2338
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2339
llvm-svn: 196777
Summary:
The immediate in these instructions is scaled before use as an offset.
They therefore have a wider reach than ld.b/st.b.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2338
llvm-svn: 196775
This prevents the compiler from emitting invalid ld.[bhwd]'s and st.[bhwd]'s
when the stack frame is between 512 and 32,768 bytes in size.
llvm-svn: 195973
Summary:
Moved the requirement for SelectionDAG::getConstant() to return legally
typed nodes slightly earlier. There were two optional DAGCombine passes
that were missed out and were required to produce type-legal DAGs.
Simplified a code-path in tryFoldToZero() to use SelectionDAG::getConstant().
This provides support for both promoted and expanded vector types whereas the
previous code only supported promoted vector types.
Fixes a "Type for zero vector elements is not legal" assertion detected by
an llvm-stress generated test.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2251
llvm-svn: 195635
Mask == ~InvMask asserts if the width of Mask and InvMask differ.
The combine isn't valid (with two exceptions, see below) if the widths differ
so test for this before testing Mask == ~InvMask.
In the specific cases of Mask=~0 and InvMask=0, as well as Mask=0 and
InvMask=~0, the combine is still valid. However, there are more appropriate
combines that could be used in these cases such as folding x & 0 to 0, or
x & ~0 to x.
llvm-svn: 195364
Summary:
LegalizeSetCCCondCode can now legalize SETEQ and SETNE by returning the inverse
condition and requesting that the caller invert the result of the condition.
The caller of LegalizeSetCCCondCode must handle the inverted CC, and they do
so as follows:
SETCC, BR_CC:
Invert the result of the SETCC with SelectionDAG::getNOT()
SELECT_CC:
Swap the true/false operands.
This is necessary for MSA which lacks an integer SETNE instruction.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2229
llvm-svn: 195355