Consider this code:
int h() {
int x;
try {
x = f();
g();
} catch (...) {
return x+1;
}
return x;
}
The variable x is undefined on the first edge to the landing pad, but it
has the f() return value on the second edge to the landing pad.
SplitAnalysis::getLastSplitPoint() would assume that the return value
from f() was live into the landing pad when f() throws, which is of
course impossible.
Detect these cases, and treat them as if the landing pad wasn't there.
This allows spill code to be inserted after the function call to f().
<rdar://problem/10664933>
llvm-svn: 147912
Delete the alternative implementation in LiveIntervalAnalysis.
These functions computed the same thing, but SplitAnalysis caches the
result.
llvm-svn: 147911
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
This makes no difference for normal defs, but early clobber dead defs
now look like:
[Slot_EarlyClobber; Slot_Dead)
instead of:
[Slot_EarlyClobber; Slot_Register).
Live ranges for normal dead defs look like:
[Slot_Register; Slot_Dead)
as before.
llvm-svn: 144512
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
llvm-svn: 144503
The leaveIntvAfter() function normally inserts a back-copy after the
requested instruction, making the back-copy kill the live range.
In spill mode, try to insert the back-copy before the last use instead.
That means the last use becomes the kill instead of the back-copy. This
lowers the register pressure because the last use can now redefine the
same register it was reading.
This will also improve compile time: The back-copy isn't a kill, so
hoisting it in hoistCopiesForSize() won't force a recomputation of the
source live range. Similarly, if the back-copy isn't hoisted by the
splitter, the spiller will not attempt hoisting it locally.
llvm-svn: 139883
When a back-copy is hoisted to the nearest common dominator, keep
looking up the dominator tree for a less loopy dominator, and place the
back-copy there instead.
Don't do this when a single existing back-copy dominates all the others.
Assume the client knows what he is doing, and keep the dominating
back-copy.
This prevents us from hoisting back-copies into loops in most cases. If
a value is defined in a loop with multiple exits, we may still hoist
back-copies into that loop. That is the speed/size tradeoff.
llvm-svn: 139698
When a ParentVNI maps to multiple defs in a new interval, its live range
may still be derived directly from RegAssign by transferValues().
On the other hand, when instructions have been rematerialized or
hoisted, it may be necessary to completely recompute live ranges using
LiveRangeCalc::extend() to all uses.
Use a bit in the value map to indicate that a live range must be
recomputed. Rename markComplexMapped() to forceRecompute().
This fixes some live range verification errors when
-split-spill-mode=size hoists back-copies by recomputing source ranges
when RegAssign kills can't be moved.
llvm-svn: 139660
Whenever the complement interval is defined by multiple copies of the
same value, hoist those back-copies to the nearest common dominator.
This ensures that at most one copy is inserted per value in the
complement inteval, and no phi-defs are needed.
llvm-svn: 139651
This function is used to flag values where the complement interval may
overlap other intervals. Call it from overlapIntv, and use the flag to
fully recompute those live ranges in transferValues().
llvm-svn: 139612
The complement interval may overlap the other intervals created, so use
a separate LiveRangeCalc instance to compute its live range.
A LiveRangeCalc instance can only be shared among non-overlapping
intervals.
llvm-svn: 139603
SplitKit will soon need two copies of these data structures, and the
algorithms will also be useful when LiveIntervalAnalysis becomes
independent of LiveVariables.
llvm-svn: 139572
SplitKit always computes a complement live range to cover the places
where the original live range was live, but no explicit region has been
allocated.
Currently, the complement live range is created to be as small as
possible - it never overlaps any of the regions. This minimizes
register pressure, but if the complement is going to be spilled anyway,
that is not very important. The spiller will eliminate redundant
spills, and hoist others by making the spill slot live range overlap
some of the regions created by splitting. Stack slots are cheap.
This patch adds the interface to enable spill modes in SplitKit. In
spill mode, SplitKit will assume that the complement is going to spill,
so it will allow it to overlap regions in order to avoid back-copies.
By doing some of the spiller's work early, the complement live range
becomes simpler. In some cases, it can become much simpler because no
extra PHI-defs are required. This will speed up both splitting and
spilling.
This is only the interface to enable spill modes, no implementation yet.
llvm-svn: 139500
Normally, we don't create a live range for a single instruction in a
basic block, the spiller does that anyway. However, when splitting a
live range that belongs to a proper register sub-class, inserting these
extra COPY instructions completely remove the constraints from the
remainder interval, and it may be allocated from the larger super-class.
The spiller will mop up these small live ranges if we end up spilling
anyway. It calls them snippets.
llvm-svn: 136989
This is either an invalid SlotIndex, or valno->def for the first value
defined inside the block. PHI values are not counted as defined inside
the block.
The FirstDef field will be used when estimating the cost of spilling
around a block.
llvm-svn: 136736
This fixes PR10463. A two-address instruction with an <undef> use
operand was incorrectly rewritten so the def and use no longer used the
same register, violating the tie constraint.
Fix this by always rewriting <undef> operands with the register a def
operand would use.
llvm-svn: 135885
If there is no interference and no last split point, we cannot
enterIntvBefore(Stop) - that function needs a real instruction.
Use enterIntvAtEnd instead for that very easy case.
This code doesn't currently run, it is needed by multi-way splitting.
llvm-svn: 135846
When splitting a live range immediately before an LDR_POST instruction
that redefines the address register, make sure to use the correct value
number in leaveIntvBefore.
We need the value number entering the instruction.
<rdar://problem/9793765>
llvm-svn: 135413
This gets rid of some of the gory splitting details in RAGreedy and
makes them available to future SplitKit clients.
Slightly generalize the functionality to support multi-way splitting.
Specifically, SplitEditor::splitLiveThroughBlock() supports switching
between different register intervals in a block.
llvm-svn: 135307
This patch will sometimes choose live range split points next to
interference instead of always splitting next to a register point. That
means spill code can now appear almost anywhere, and it was necessary
to fix code that didn't expect that.
The difficult places were:
- Between a CALL returning a value on the x87 stack and the
corresponding FpPOP_RETVAL (was FpGET_ST0). Probably also near x87
inline assembly, but that didn't actually show up in testing.
- Between a CALL popping arguments off the stack and the corresponding
ADJCALLSTACKUP.
Both are fixed now. The only place spill code can't appear is after
terminators, see SplitAnalysis::getLastSplitPoint.
Original commit message:
Rewrite RAGreedy::splitAroundRegion, now with cool ASCII art.
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
llvm-svn: 134125
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
llvm-svn: 134047
Delete the Kill and Def markers in BlockInfo. They are no longer
necessary when BlockInfo describes a continuous live range.
This only affects the relatively rare kind of basic block where a live
range looks like this:
|---x o---|
Now live range splitting can pretend that it is looking at two blocks:
|---x
o---|
This allows the code to be simplified a bit.
llvm-svn: 132245
It is important that this function returns the same number of live blocks as
countLiveBlocks(CurLI) because live range splitting uses the number of live
blocks to ensure it is making progress.
This is in preparation of supporting duplicate UseBlock entries for basic blocks
that have a virtual register live-in and live-out, but not live-though.
llvm-svn: 132244
Register coalescing can sometimes create live ranges that end in the middle of a
basic block without any killing instruction. When SplitKit detects this, it will
repair the live range by shrinking it to its uses.
Live range splitting also needs to know about this. When the range shrinks so
much that it becomes allocatable, live range splitting fails because it can't
find a good split point. It is paranoid about making progress, so an allocatable
range is considered an error.
The coalescer should really not be creating these bad live ranges. They appear
when coalescing dead copies.
llvm-svn: 130787
When an interfering live range ends at a dead slot index between two
instructions, make sure that the inserted copy instruction gets a slot index
after the dead ones. This makes it possible to avoid the interference.
Ideally, there shouldn't be interference ending at a deleted instruction, but
physical register coalescing can sometimes do that to sub-registers.
This fixes PR9823.
llvm-svn: 130687
These intervals are allocatable immediately after splitting, but they may be
evicted because of later splitting. This is rare, but when it happens they
should be split again.
The remainder intervals that cannot be allocated after splitting still move
directly to spilling.
SplitEditor::finish can optionally provide a mapping from new live intervals
back to the original interval indexes returned by openIntv().
Each original interval index can map to multiple new intervals after connected
components have been separated. Dead code elimination may also add existing
intervals to the list.
The reverse mapping allows the SplitEditor client to treat the new intervals
differently depending on the split region they came from.
llvm-svn: 129925
The transferValues() function can now handle both singly and multiply defined
values, as long as the resulting live range is known. Only rematerialized values
have their live range recomputed by extendRange().
The updateSSA() function can now insert PHI values in bulk across multiple
values in multiple target registers in one pass. The list of blocks received
from transferValues() is in layout order which seems to work well for the
iterative algorithm. Blocks from extendRange() are still in reverse BFS order,
but this function is used so rarely now that it doesn't matter.
llvm-svn: 129580
This merges the behavior of splitSingleBlocks into splitAroundRegion, so the
RS_Region and RS_Block register stages can be coalesced. That means the leftover
intervals after region splitting go directly to spilling instead of a second
pass of per-block splitting.
llvm-svn: 129379
It is common for large live ranges to have few basic blocks with register uses
and many live-through blocks without any uses. This approach grows the Hopfield
network incrementally around the use blocks, completely avoiding checking
interference for some through blocks.
llvm-svn: 129188
About 90% of the relevant blocks are live-through without uses, and the only
information required about them is their number. This saves memory and enables
later optimizations that need to look at only the use-blocks.
llvm-svn: 128985
This allows us to always keep the smaller slot for an instruction which is what
we want when a register has early clobber defines.
Drop the UsingInstrs set and the UsingBlocks map. They are no longer needed.
llvm-svn: 128886
inlined path for the common case.
Most basic blocks don't contain a call that may throw, so the last split point
os simply the first terminator.
llvm-svn: 128874
I have convinced myself that it can only happen when a phi value dies. When it
happens, allocate new virtual registers for the components.
llvm-svn: 127827
LiveRangeEdit::eliminateDeadDefs() will eventually be used by coalescing,
splitting, and spilling for dead code elimination. It can delete chains of dead
instructions as long as there are no dependency loops.
llvm-svn: 127287
The coalescer can in very rare cases leave too large live intervals around after
rematerializing cheap-as-a-move instructions.
Linear scan doesn't really care, but live range splitting gets very confused
when a live range is killed by a ghost instruction.
I will fix this properly in the coalescer after 2.9 branches.
llvm-svn: 127096
Values that map to a single new value in a new interval after splitting don't
need new PHIDefs, and if the parent value was never rematerialized the live
range will be the same.
llvm-svn: 126894
Extract the updateSSA() method from the too long extendRange().
LiveOutCache can be shared among all the new intervals since there is at most
one of the new ranges live out from each basic block.
llvm-svn: 126818
This method could probably be used by LiveIntervalAnalysis::shrinkToUses, and
now it can use extendIntervalEndTo() which coalesces ranges.
llvm-svn: 126803
The value map is currently not used, all values are 'complex mapped' and
LiveIntervalMap::mapValue is used to dig them out.
This is the first step in a series changes leading to the removal of
LiveIntervalMap. Its data structures can be shared among all the live intervals
created by a split, so it is wasteful to create a copy for each.
llvm-svn: 126800
An original endpoint is an instruction that killed or defined the original live
range before any live ranges were split.
When splitting global live ranges, avoid creating local live ranges without any
original endpoints. We may still create global live ranges without original
endpoints, but such a range won't be split again, and live range splitting still
terminates.
llvm-svn: 126151
If a live range is used by a terminator instruction, and that live range needs
to leave the block on the stack or in a different register, it can be necessary
to have both sides of the split live at the terminator instruction.
Example:
%vreg2 = COPY %vreg1
JMP %vreg1
Becomes after spilling %vreg2:
SPILL %vreg1
JMP %vreg1
The spill doesn't kill the register as is normally the case.
llvm-svn: 125102
A live range cannot be split everywhere in a basic block. A split must go before
the first terminator, and if the variable is live into a landing pad, the split
must happen before the call that can throw.
llvm-svn: 124894
If the found value is not live-through the block, we should only add liveness up
to the requested slot index. When the value is live-through, the whole block
should be colored.
Bug found by SSA verification in the machine code verifier.
llvm-svn: 124812
The greedy register allocator revealed some problems with the value mapping in
SplitKit. We would sometimes start mapping values before all defs were known,
and that could change a value from a simple 1-1 mapping to a multi-def mapping
that requires ssa update.
The new approach collects all defs and register assignments first without
filling in any live intervals. Only when finish() is called, do we compute
liveness and mapped values. At this time we know with certainty which values map
to multiple values in a split range.
This also has the advantage that we can compute live ranges based on the
remaining uses after rematerializing at split points.
The current implementation has many opportunities for compile time optimization.
llvm-svn: 124765