To be able to have more meaningful performance out of workloadsi going through
the vulkan-runner we need to use buffers from GPU device memory as access to
system memory is significantly slower for GPU with dedicated memory. This adds
code to do a copy through staging buffer as GPU memory cannot always be mapped
on the host.
Differential Revision: https://reviews.llvm.org/D82504
The JitRunner library is logically very close to the execution engine,
and shares similar dependencies.
find -name "*.cpp" -exec sed -i "s/Support\/JitRunner/ExecutionEngine\/JitRunner/" "{}" \;
Differential Revision: https://reviews.llvm.org/D79899
The Vulkan runtime wrapper will be compiled to a shared library
that are loaded by the JIT runner. Depending on LLVM libraries
means that LLVM symbols will be compiled into the shared library.
That can cause problems if we are using it with other shared
libraries depending on LLVM, notably Mesa, the open-source graphics
driver framework. The Vulkan API wrappers invoked by the JIT runner
links to the system libvulkan.so. If it's Mesa providing the
implementation, Mesa will normally try to load the system libLLVM.so
for its shader compilation. That causes issues because the JIT runner
already loaded the Vulkan runtime wrapper which has LLVM sybmols
compiled in. So system linker will instruct Mesa to use those symbols
instead.
Differential Revision: https://reviews.llvm.org/D79860
vulkan-runtime-wrappers does not need MLIRSPIRVSerialization,
which is used by the ConvertGpuLaunchFuncToVulkanLaunchFunc pass
under the hood.
Differential Revision: https://reviews.llvm.org/D79577
Summary:
This revision adds two utilities currently present in MLIR to LLVM StringExtras:
* convertToSnakeFromCamelCase
Convert a string from a camel case naming scheme, to a snake case scheme
* convertToCamelFromSnakeCase
Convert a string from a snake case naming scheme, to a camel case scheme
Differential Revision: https://reviews.llvm.org/D78167
Summary:
This file only contains references to test passes, and was never removed when the test passes were moved to the test/ directory.
Differential Revision: https://reviews.llvm.org/D76553
A memref argument is converted into a pointer-to-struct argument
of type `{T*, T*, i64, i64[N], i64[N]}*` in the wrapper function,
where T is the converted element type and N is the memref rank.
Differential Revision: https://reviews.llvm.org/D76059
This commits changes the definition of spv.module to use the #spv.vce
attribute for specifying (version, capabilities, extensions) triple
so that we can have better API and custom assembly form. Since now
we have proper modelling of the triple, (de)serialization is wired up
to use them.
With the new UpdateVCEPass, we don't need to manually specify the
required extensions and capabilities anymore when creating a spv.module.
One just need to call UpdateVCEPass before serialization to get the
needed version/extensions/capabilities.
Differential Revision: https://reviews.llvm.org/D75872
* Adds GpuLaunchFuncToVulkanLaunchFunc conversion pass.
* Moves a serialization of the `spirv::Module` from LaunchFuncToVulkanCalls pass to newly created pass.
* Updates LaunchFuncToVulkanCalls instrumentation pass, adds `initVulkan` and `deinitVulkan` runtime calls.
* Adds `bindResource` call to bind specifc resource by the given descriptor set and descriptor binding.
* Eliminates static construction and desctruction of `VulkanRuntimeManager`.
Differential Revision: https://reviews.llvm.org/D75192
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
This commit adds timestamp query commands in Vulkan runner's
compute pipeline to gain insights into how long it takes to
run the compute shader. This commit also adds timing from CPU
side for VkQueueSubmit and vkQueueWaitIdle.
Differential Revision: https://reviews.llvm.org/D75531
Previously, lib/Support/JitRunner.cpp was essentially a complete application,
performing all library initialization, along with dealing with command line
arguments and actually running passes. This differs significantly from
mlir-opt and required a dependency on InitAllDialects.h. This dependency
is significant, since it requires a dependency on all of the resulting
libraries.
This patch refactors the code so that tools are responsible for library
initialization, including registering all dialects, prior to calling
JitRunnerMain. This places the concern about what dialect to support
with the end application, enabling more extensibility at the cost of
a small amount of code duplication between tools. It also fixes
BUILD_SHARED_LIBS=on.
Differential Revision: https://reviews.llvm.org/D75272
Collect a list of conversion libraries in cmake, so we don't have to
list these explicitly in most binaries.
Differential Revision: https://reviews.llvm.org/D75222
Instead of creating extra libraries we don't really need, collect a
list of all dialects and use that instead.
Differential Revision: https://reviews.llvm.org/D75221
Add an initial version of mlir-vulkan-runner execution driver.
A command line utility that executes a MLIR file on the Vulkan by
translating MLIR GPU module to SPIR-V and host part to LLVM IR before
JIT-compiling and executing the latter.
Differential Revision: https://reviews.llvm.org/D72696