The rematerialized instruction may require a more constrained register class
than the register being spilled. In the test case, the spilled register has been
inflated to the DPR register class, but we are rematerializing a load of the
ssub_0 sub-register which only exists for DPR_VFP2 registers.
The register class is reinflated after spilling, so the conservative choice is
only temporary.
llvm-svn: 128610
{STR,LDC}{2}_PRE.
- Fixed the encoding in some places.
- Some of those instructions were using am2offset and now use addrmode2.
Codegen isn't affected, instructions which use SelectAddrMode2Offset were not
touched.
- Teach printAddrMode2Operand to check by the addressing mode which index
mode to print.
- This is a work in progress, more work to come. The idea is to change places
which use am2offset to use addrmode2 instead, as to unify assembly parser.
- Add testcases for assembly parser
llvm-svn: 128585
that one of the numbers is signed while the other is unsigned. This could lead
to a wrong result when the signed was promoted to an unsigned int.
* Add the data layout line to the testcase so that it will test the appropriate
thing.
Patch by David Terei!
llvm-svn: 128577
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
llvm-svn: 128502
isel lowering to fold the zero-extend's and take advantage of no-stall
back to back vmul + vmla:
vmull q0, d4, d6
vmlal q0, d5, d6
is faster than
vaddl q0, d4, d5
vmovl q1, d6
vmul q0, q0, q1
This allows us to vmull + vmlal for:
f = vmull_u8( vget_high_u8(s), c);
f = vmlal_u8(f, vget_low_u8(s), c);
rdar://9197392
llvm-svn: 128444
removes one use of X which helps it pass the many hasOneUse() checks.
In my analysis, this turns up very often where X = A >>exact B and that can't be
simplified unless X has one use (except by increasing the lifetime of A which is
generally a performance loss).
llvm-svn: 128373
Correctly terminate the range of register DBG_VALUEs when the register is
clobbered or when the basic block ends.
The code is now ready to deal with variables that are sometimes in a register
and sometimes on the stack. We just need to teach emitDebugLoc to say 'stack
slot'.
llvm-svn: 128327
masks to match inversely for the code as is to work. For the example given
we actually want:
bfi r0, r2, #1, #1
not #0, however, given the way the pattern is written it's not possible
at the moment.
Fixes rdar://9177502
llvm-svn: 128320
The .dot directives don't need labels, that is a leftover from when we created
line number info manually.
Instructions following a DBG_VALUE can share its label since the DBG_VALUE
doesn't produce any code.
llvm-svn: 128284
According to A8.6.189 STM/STMIA/STMEA (Encoding T1), there's only tSTMIA_UPD available.
Ignore tSTMIA for the decoder emitter and add a test case for that.
llvm-svn: 128246
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add a test case.
llvm-svn: 128240
Set the encoding bits to {0,?,?,0}, not 0. Plus delegate the disassembly of ADR to
the more generic ADDri/SUBri instructions, and add a test case for that.
llvm-svn: 128234
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add two test cases.
llvm-svn: 128191
were incomplete. The assert stmt needs to be updated and the operand index incrment is wrong.
Fix the bad logic and add some sanity checking to detect bad instruction encoding;
and add a test case.
llvm-svn: 128186
int tries = INT_MAX;
while (tries > 0) {
tries--;
}
The check should be:
subs r4, #1
cmp r4, #0
bgt LBB0_1
The subs can set the overflow V bit when r4 is INT_MAX+1 (which loop
canonicalization apparently does in this case). cmp #0 would have cleared
it while not changing the N and Z bits. Since BGT is dependent on the V
bit, i.e. (N == V) && !Z, it is not safe to eliminate the cmp #0.
rdar://9172742
llvm-svn: 128179
This will extend the ranges of debug info variables in registers until they are
clobbered.
Fix 1: Don't mistake DBG_VALUE instructions referring to incoming arguments on
the stack with DBG_VALUE instructions referring to variables in the frame
pointer. This fixes the gdb test-suite failure.
Fix 2: Don't trace through copies to physical registers setting up call
arguments. These registers are call clobbered, and the source register is more
likely to be a callee-saved register that can be extended through the call
instruction.
llvm-svn: 128114
VFP Load/Store Multiple Instructions used to embed the IA/DB addressing mode within the
MC instruction; that has been changed so that now, for example, VSTMDDB_UPD and VSTMDIA_UPD
are two instructions. Update the ARMDisassemblerCore.cpp's DisassembleVFPLdStMulFrm()
to reflect the change.
Also add a test case.
llvm-svn: 128103
These ranges get completely jumbled by the post-ra scheduler, and it is not
really reasonable to expect it to make sense of them.
Instead, teach DwarfDebug to notice when user variables in registers are
clobbered, and terminate the ranges there.
llvm-svn: 128045
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
llvm-svn: 127953
not have native support for this operation (such as X86).
The legalized code uses two vector INT_TO_FP operations and is faster
than scalarizing.
llvm-svn: 127951
The relevant instruction table entries were changed sometime ago to no longer take
<Rt2> as an operand. Modify ARMDisassemblerCore.cpp to accomodate the change and
add a test case.
llvm-svn: 127935
- Emit mad instead of mad.rn for shader model 1.0
- Emit explicit mov.u32 instructions for reading global variables
- (most PTX instructions cannot take global variable immediates)
llvm-svn: 127895
For example, on 32-bit architecture, don't promote all uses of the IV
to 64-bits just because one use is a 64-bit cast.
Alternate implementation of the patch by Arnaud de Grandmaison.
llvm-svn: 127884
comparisons on x86. Essentially, the way this works is that SUB+SBB sets
the relevant flags the same way a double-width CMP would.
This is a substantial improvement over the generic lowering in LLVM. The output
is also shorter than the gcc-generated output; I haven't done any detailed
benchmarking, though.
llvm-svn: 127852
o A8.6.195 STR (register) -- Encoding T1
o A8.6.193 STR (immediate, Thumb) -- Encoding T1
It has been changed so that now they use different addressing modes
and thus different MC representation (Operand Infos). Modify the
disassembler to reflect the change, and add relevant tests.
llvm-svn: 127833
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
llvm-svn: 127766
chose is having a non-memcpy/memset use and being larger than any native integer
type. Originally I chose having an access of a size smaller than the total size
of the alloca, but this caused some minor issues on the spirit benchmark where
SRoA runs again after some inlining.
This fixes <rdar://problem/8613163>.
llvm-svn: 127718
1. The ARM Darwin *r9 call instructions were pseudo-ized recently.
Modify the ARMDisassemblerCore.cpp file to accomodate the change.
2. The disassembler was unnecessarily adding 8 to the sign-extended imm24:
imm32 = SignExtend(imm24:'00', 32); // A8.6.23 BL, BLX (immediate)
// Encoding A1
It has no business doing such. Removed the offending logic.
Add test cases to arm-tests.txt.
llvm-svn: 127707
v2 = bitcast v1
...
v3 = bitcast v2
...
= v3
=>
v2 = bitcast v1
...
= v1
if v1 and v3 are of in the same register class.
bitcast between i32 and fp (and others) are often not nops since they
are in different register classes. These bitcast instructions are often
left because they are in different basic blocks and cannot be
eliminated by dag combine.
rdar://9104514
llvm-svn: 127668