The Blocks runtime provide a header named Block.h.
It is generally preferable to avoid name collision with system headers
(reducing reliance on -isystem order, more friendly when navigating files in
an editor, etc).
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D74934
Followup to D73919 with another batch of replacements of
setOperand() -> replaceOperand(), to make sure the old
operand gets DCEd right away.
Differential Revision: https://reviews.llvm.org/D74932
ToVectorTy is defined and used in multiple places. Hoist it to
VectorUtils.h to avoid duplication and improve re-usability.
Reviewers: rengolin, hsaito, Ayal, gilr, fpetrogalli
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D74959
This changes the SimplifyLibCalls utility to accept an IRBuilderBase,
which allows us to pass through the IRBuilder used by InstCombine.
This will ensure that new instructions get added to the worklist.
The annotated test-case drops from 4 to 2 InstCombine iterations thanks
to this.
To achieve this, I'm adding an IRBuilderBase::OperandBundlesGuard,
which is basically the same as the existing InsertPointGuard and
FastMathFlagsGuard, but for operand bundles. Also add a
setDefaultOperandBundles() method so these can be set outside the
constructor.
Differential Revision: https://reviews.llvm.org/D74792
A cost query for a vector instruction should return a cost even without
target vector support, and not trigger an assert.
VectorCombine does this with an input containing source code vectors.
Review: Ulrich Weigand
We don't use this, and matching from the def doesn't make much sense.
There are multiple tablegen bugs with default operand
handling. undef_tied_input should work to handle the vdst_in
correctly, but this breaks the operand register class constraint which
it should be able to infer.
Summary:
This revision adds matchers that match calls to the gtest EXPECT and ASSERT
macros almost like function calls. The matchers are placed in separate files
(GtestMatchers...), because they are specific to the gtest library.
Reviewers: gribozavr2
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74840
Can be used like
-debug-counter=dse-memoryssa-skip=10,dse-memoryssa-counter-count=20
Reviewers: dmgreen, rnk, efriedma, bryant, asbirlea
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D72147
Add +fullfp16 to sve-vector-splat.ll so we can test folding of immediates into moves.
This attribute can go away later when SVE has a full set of fp16 patterns in place.
Differential Revision: https://reviews.llvm.org/D74965
We should try the generated matchers before the manual selection. This
means the patterns are now handling the common cases, but the manual
selection code is not yet dead. It's still handling the non-s32/s64
cases (like v2s16 and v2s32). Currently tablegen doesn't have a nice
way to have a single pattern that covers multiple types.
This change will bring lldb-vscode in line with how several other llvm
tools process command line arguments and make it easier to add future
options.
Differential revision: https://reviews.llvm.org/D74798
When the output section address (addrExpr) is specified, GNU ld warns if
sh_addr is different. This patch implements the warning.
Note, LinkerScript::assignAddresses can be called more than once. We
need to record the changed section addresses, and only report the
warnings after the addresses are finalized.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D74741
Follow-up for D74286.
Notations:
* alignExpr: the computed ALIGN value
* max_input_align: the maximum of input section alignments
This patch changes the following two cases to match GNU ld:
* When ALIGN is present, GNU ld sets output sh_addr to alignExpr, while lld use max(alignExpr, max_input_align)
* When addrExpr is specified but alignExpr is not, GNU ld sets output sh_addr to addrExpr, while lld uses `advance(0, max_input_align)`
Note, sh_addralign is still set to max(alignExpr, max_input_align).
lma-align.test is enhanced a bit to check we don't overalign sh_addr.
fixSectionAlignments() sets addrExpr but not alignExpr for the `!hasSectionsCommand` case.
This patch sets alignExpr as well so that max_input_align will be respected.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D74736
We have patterns for s_pack* selection, but they assume the inputs are
a build_vector with 16-bit inputs, not a truncating build
vector. Since there's still outstanding work for how to handle
mismatched result and source element vector operations, and since I'm
trying a different packed vector strategy than SelectionDAG, just
manually select this for now.
There are few differences from the DAG handling. First, the DAG
handling uses a primitive selection pattern instead of custom
legalizing it. Because of this, this makes use of source modifiers
while the DAG does not.
Also instead of promoting f16, try to use the f16 log/exp. There's no
f16 fmul_legacy, so widen just for the multiply, although I'm not sure
that's the best solution.
This looked through copies to find the source modifiers, which may
have been SGPR->VGPR copies added to avoid potential constant bus
violations. Re-insert a copy to a VGPR if this happens.
Remove some cumbersome Darwin specific logic for updating the frame
offsets of the condition-register spill slots. The containing function has an
early return if the subtarget is not ELF based which makes the Darwin logic
dead.
Summary:
We already have a "Failed" matcher, which can be used to check any
property of the Error object. However, most frequently one just wants to
check the error message, and while this is possible with the "Failed"
matcher, it is also very convoluted
(Failed<ErrorInfoBase>(testing::Property(&ErrorInfoBase::message, "the
message"))).
Now, one can just write: FailedWithMessage("the message"). I expect that
most of the usages will remain this simple, but the argument of the
matcher is not limited to simple strings -- the argument of the matcher
can be any other matcher, so one can write more complicated assertions
if needed (FailedWithMessage(ContainsRegex("foo|bar"))). If one wants to
match multiple error messages, he can pass multiple arguments to the
matcher.
If one wants to match the message list as a whole (perhaps to check the
message count), I've also included a FailedWithMessageArray matcher,
which takes a single matcher receiving a vector of error message
strings.
Reviewers: sammccall, dblaikie, jhenderson
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74898
Use the SelectionDAG::getValidShiftAmountConstant helper to get const/constsplat shift amounts, which allows us to drop the out of range shift amount early-out.
First step towards better non-uniform shift amount support in SimplifyDemandedBits.
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
The (overloaded) intrinsic is llvm.hexagon.V6.pred.typecast[.128B]. The
types of the operand and the return value are HVX boolean vector types.
For each cast, there needs to be a corresponding intrinsic declared,
with different suffixes appended to the name, e.g.
; cast <128 x i1> to <32 x i1>
declare <32 x i1> @llvm.hexagon.V6.pred.typecast.128B.s1(<128 x i1>)
; cast <32 x i1> to <64 x i1>
declare <64 x i1> @llvm.hexagon.V6.pred.typecast.128B.s2(<32 x i1>)
etc.
Summary:
There is a flaw in memory dependence analysis caching mechanism when memory accesses with TBAA are involved. Assume we first analysed and cached results for access with TBAA. Later we request dependence for the same memory but without TBAA (or different TBAA). By design these two queries should share one entry in the internal cache which corresponds to a general access (without TBAA). Thus upon second request internal cached is cleared and we continue analysis for access as if there is no TBAA.
The problem is that even though internal cache is cleared the set of visited nodes is not. That means we won't traverse visited nodes again and populate internal cache with the corresponding dependence results. So we end up with internal cache in an incomplete state. Current implementation tries to signal that situation by resetting CacheInfo->Pair at line 1104. But that doesn't actually help since later code ignores this invalidation and relies on 'Cache->empty()' property to decide on cache completeness.
Reviewers: reames, hfinkel, chandlerc, fedor.sergeev, asbirlea, fhahn, john.brawn, Prazek, sunfish
Reviewed By: john.brawn
Subscribers: DaniilSuchkov, kosarev, jfb, dantrushin, hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73032
A question about this behavior came up on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139003.html
...and as part of backend improvements in D73978, but this is an IR
change first because we already have fairly thorough tests in place
here.
We decided not to implement a more general change that would have
folded any FP binop with nearly arbitrary constant + undef operand
to undef because that is not theoretically correct (even if it is
practically correct).
Differential Revision: https://reviews.llvm.org/D74713
This change adds some missing arithmetic and logical operators to
`TemplatedIndexedValue` for EDSC usage.
Differential Revision: https://reviews.llvm.org/D74686
This change is relevant when embedding the llvm cmake project into
another project. It should not change the build behavior of a normal
llvm build.
In the case where llvm is embedded as a cmake subproject,
CMAKE_SOURCE_DIR does not point to the expected directory and building
the tests fails.
Using CMAKE_CURRENT_SOURCE_DIR fixes this problem, as it will always
point to the same directory.
Differential Revision: https://reviews.llvm.org/D73466
Summary:
It was disabled because we don't handle explicit template
specialization well (due to the index limitation).
renaming templates is normal in practic, rather than disabling it, this patch
allows to rename them though it is not perfect (just a known limitation).
Context: https://github.com/clangd/clangd/issues/280
Reviewers: kbobyrev
Reviewed By: kbobyrev
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74709