TypenameType if getTypeName is looking at a member of an unknown
specialization. This allows us to properly parse class templates that
derived from type that could only otherwise be described by a typename type,
e.g.,
template<class T> struct X {};
template<typename T> struct Y : public X<T>::X { };
Fixes PR4381.
llvm-svn: 80123
their members, including member class template, member function
templates, and member classes and functions of member templates.
To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,
template<typename X> template<typename Y>
X Outer<X>::Inner1<Y>::foo(Y) {
return X();
}
we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.
Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.
llvm-svn: 80044
and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
elsewhere. Very slightly decouples DeclSpec users from knowing the exact
diagnostics to report, and makes it easier to provide different diagnostics in
some places.
llvm-svn: 77990
point that covers templates and non-templates. This should eliminate
the flood of warnings I introduced yesterday.
Removed the ActOnClassTemplate action, which is no longer used.
llvm-svn: 76881
Another case where we should use SmallVector::data() instead of taking the
address of element 0 of a SmallVector when the SmallVector has no elements.
llvm-svn: 74556
C++. This logic is required to trigger implicit instantiation of
function templates and member functions of class templates, which will
be implemented separately.
This commit includes support for -Wunused-parameter, printing warnings
for named parameters that are not used within a function/Objective-C
method/block. Fixes <rdar://problem/6505209>.
llvm-svn: 73797
specifier resulted in the creation of a new TagDecl node, which
happens either when the tag specifier was a definition or when the tag
specifier was the first declaration of that tag type. This information
has several uses, the first of which is implemented in this commit:
1) In C++, one is not allowed to define tag types within a type
specifier (e.g., static_cast<struct S { int x; } *>(0) is
ill-formed) or within the result or parameter types of a
function. We now diagnose this.
2) We can extend DeclGroups to contain information about any tags
that are declared/defined within the declaration specifiers of a
variable, e.g.,
struct Point { int x, y, z; } p;
This will help improve AST printing and template instantiation,
among other things.
3) For C99, we can keep track of whether a tag type is defined
within the type of a parameter, to properly cope with cases like,
e.g.,
int bar(struct T2 { int x; } y) {
struct T2 z;
}
We can also do similar things wherever there is a type specifier,
e.g., to keep track of where the definition of S occurs in this
legal C99 code:
(struct S { int x, y; } *)0
llvm-svn: 72555
-Makes typeof consistent with sizeof/alignof
-Fixes a bug when '>' is in a typeof expression, inside a template type param:
A<typeof(x>1)> a;
llvm-svn: 72255
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
llvm-svn: 72214
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086